macro economics question and need guidance to help me learn.
(All answers in Chapter 4) the book in the attachment (Use easy word and sentences)
Short questions:
1. Define “Utility Maximization” and discuss the two limitations of utility maximization with examples.
2. What is the first-order function for a maximum utility? Draw a graph demonstrating utility Maximization and explain underlying concepts.
3. Explain the Lump Sum Principle, give an example of it, and draw the related graph.
4. Discuss the three properties of expenditure functions.
Problems: b:(2.171)Noticethatheretheprobabilitiesintegrateto1.0:∫þ∞∞fðxÞdx¼∫ba1badx¼xbaba¼bbaaba¼baba¼1:0:(2.172)3.Exponentialdistribution.Thisisacontinuousdistributionforwhichtheprobabilitiesdeclineatasmoothexponentialrateasxincreases.Formally:fðxÞ¼λeλxifx>0,0ifx0,(2.173)66Part1Introduction
1. On a given morning, Tom enjoys the consumption of cake (c) and bread (b) according to the following function:
U (c, b) = 20c- c² + 18b-3b²
How many pieces of cakes and breads does he consume during a morning? (Cost is no object to Tom)
Requirements: 1 d
PowerPoint Slides prepared by: V. Andreea CHIRITESCUEastern Illinois UniversityWalter Nicholson | Christopher Snyder 12th editionCHAPTER Utility Maximization 4 and Choice© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.1
Utility Maximization and Choice•Complaints about the Economic Approach–Do individuals make the “lightning calculations” required for utility maximization?•The utility-maximization model predicts many aspects of behavior•Economists assume that people behave as if they made such calculations© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.2
Utility Maximization and Choice•Complaints about the Economic Approach–The economic model of choice is extremely selfish•Nothing in the model prevents individuals from getting satisfaction from “doing good”© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.3
An Initial Survey•Optimization principle, Utility maximization–To maximize utility, given a fixed amount of income to spend–An individual will buy those quantities of goods •That exhaust his or her total income •And for which the MRS is equal to the rate at which the goods can be traded one for the other in the marketplace– MRS (of x for y) = the ratio of the price of x to the price of y (px/py)© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.4
The Two-Good Case•Assumptions –Budget: I dollars to allocate between good x and good y– px – price of good x – py – price of good y•Budget constraint: pxx + pyy ≤ I –Slope = -px/py–If all of I is spent on good x, buy I/px units of good x© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.5
4.1 The Individual’s Budget Constraint for Two GoodsThose combinations of x and y that the individual can afford are shown in the shaded triangle. If, as we usually assume, the individual prefers more rather than less of every good, the outer boundary of this triangle is the relevant constraint where all the available funds are spent either on x or on y. The slope of this straight-line boundary is given by –px/py.© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.6I=pxx+pyyQuantity of xQuantity of y
The Two-Good Case•First-order conditions for a maximum–Point of tangency between the budget constraint and the indifference curve:© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.7
4.2 A Graphical Demonstration of Utility MaximizationPoint C represents the highest utility level that can be reached by the individual, given the budget constraint. Therefore, the combination x*,y* is the rational way for the individual to allocate purchasing power. Only for this combination of goods will two conditions hold: All available funds will be spent, and the individual’s psychic rate of trade-off (MRS) will be equal to the rate at which the goods can be traded in the market ( px/py).© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.8I=pxx+pyyQuantity of xQuantity of yU1U3DU2ABCy*x*
The Two-Good Case•The tangency rule –Is necessary but not sufficient unless we assume that MRS is diminishing•If MRS is diminishing, then indifference curves are strictly convex•If MRS is not diminishing, we must check second-order conditions to ensure that we are at a maximum© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.9
4.3 Example of an Indifference Curve Map for Which the Tangency Condition Does Not Ensure a MaximumIf indifference curves do not obey the assumption of a diminishing MRS, not all points of tangency (points for which MRS = px/py) may truly be points of maximum utility. In this example, tangency point C is inferior to many other points that can also be purchased with the available funds. In order that the necessary conditions for a maximum (i.e., the tangency conditions) also be sufficient, one usually assumes that the MRS is diminishing; that is, the utility function is strictly quasi-concave.© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.10Quantity of xQuantity of yU1U3U2CAB
The Two-Good Case•Corner solutions–Individuals may maximize utility by choosing to consume only one of the goods–At the optimal point the budget constraint is flatter than the indifference curve•The rate at which x can be traded for y in the market is lower than the MRS© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.11
4.4 Corner Solution for Utility MaximizationWith the preferences represented by this set of indifference curves, utility maximization occurs at E, where 0 amounts of good y are consumed. The first-order conditions for a maximum must be modified somewhat to accommodate this possibility.© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.12Quantity of xQuantity of yU2U3U1x*
The n-Good Case•The individual’s objective is to maximizeutility = U(x1,x2,…,xn)– subject to the budget constraintI = p1x1 + p2x2 +…+ pnxn•Set up the Lagrangian:ℒ = U(x1,x2,…,xn) + (I – p1x1 – p2x2 -…- pnxn)© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.13
The n-Good Case•First-order conditions for an interior maximum ℒ/x1 = U/x1 – p1 = 0 ℒ /x2 = U/x2 – p2 = 0 … ℒ /xn = U/xn – pn = 0 ℒ / = I – p1x1 – p2x2 – … – pnxn = 0© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.14
The n-Good Case•Implications of first-order conditions–For any two goods, xi and yj:© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.15
The n-Good Case•Interpreting the Lagrange multiplier– is the marginal utility of an extra dollar of consumption expenditure•The marginal utility of income© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.16
The n-Good Case•At the margin, the price of a good–Represents the consumer’s evaluation of the utility of the last unit consumed–How much the consumer is willing to pay for the last unit© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.17
The n-Good Case•Corner solutions–Means that the first-order conditions must be modified:ℒ/xi = U/xi – pi 0 (i = 1,…,n)–If ℒ/xi = U/xi – pi < 0, then xi = 0–This means that© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.18–any good whose price exceeds its marginal value to the consumer will not be purchased
4.1 Cobb–Douglas Demand Functions© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.19•Cobb-Douglas utility function:U(x,y) = xy, where α+β=1•Setting up the Lagrangian:ℒ = xy + (I - pxx - pyy)•First-order conditions:ℒ/x = x-1y - px = 0ℒ/y = xy-1 - py = 0ℒ/ = I - pxx - pyy = 0
4.1 Cobb–Douglas Demand Functions© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.20•First-order conditions imply: y/x = px/py–Since + = 1: pyy = (/)pxx = [(1- )/]pxx•Substituting into the budget constraint: I = pxx + [(1- )/]pxx = (1/)pxx•Solving: x*=I/px and y*=I/py–The individual will allocate percent of his income to good x and percent of his income to good y
4.1 Cobb–Douglas Demand Functions© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.21•Cobb-Douglas utility function–Is limited in its ability to explain actual consumption behavior–The share of income devoted to a good often changes in response to changing economic conditions•A more general functional form might be more useful
4.2 CES Demand© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.22•Assume that = 0.5U(x,y) = x0.5 + y0.5•Setting up the Lagrangian:ℒ = x0.5 + y0.5 + (I - pxx - pyy)•First-order conditions for a maximum:ℒ/x = 0.5x -0.5 - px = 0ℒ/y = 0.5y -0.5 - py = 0ℒ/ = I - pxx - pyy = 0
4.2 CES Demand© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.23•This means that: (y/x)0.5 = px/py–Substituting into the budget constraint, we can solve for the demand functions•The share of income spent on either x or y is not a constant•Depends on the ratio of the two prices •The higher is the relative price of x, the smaller will be the share of income spent on x
4.2 CES Demand© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.24•If = -1,U(x,y) = -x -1 - y -1•First-order conditions imply thaty/x = (px/py)0.5•The demand functions are
4.2 CES Demand© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.25•If = -, U(x,y) = min(x,4y)–The person will choose only combinations for which x = 4y–This means thatI = pxx + pyy = pxx + py(x/4)I = (px + 0.25py)x•The demand functions are
Indirect Utility Function•It is often possible to manipulate first-order conditions to solve for optimal values of x1,x2,…,xn–These optimal values will bex*1 = x1(p1,p2,…,pn,I)x*2 = x2(p1,p2,…,pn,I)…x*n = xn(p1,p2,…,pn,I)© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.26
Indirect Utility Function•We can use the optimal values of the x’s to find the indirect utility functionmaximum utility = U[x*1(p1,p2,…,pn,I), x*2(p1,p2,…,pn,I),…,x*n(p1,p2,…,pn,I)] = = V(p1,p2,…,pn,I)–The indirect utility function is an example of a value function•The optimal level of utility will depend indirectly on prices and income© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.27
The Lump Sum Principle•Taxes on an individual’s general purchasing power –Are superior to taxes on a specific good•An income tax allows the individual to decide freely how to allocate remaining income•A tax on a specific good will reduce an individual’s purchasing power and distort his choices© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.28
4.5 The Lump Sum Principle of TaxationA tax on good x would shift the utility-maximizing choice from x*, y* to x1, y1. An income tax that collected the same amount would shift the budget constraint to I’. Utility would be higher (U2) with the income tax than with the tax on x alone (U1).© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.29
4.3 Indirect Utility and the Lump Sum Principle© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.30•Cobb-Douglas utility function–With = = 0.5, –We know that x*=I/2px and y*=I/2py•The indirect utility function
4.3 Indirect Utility and the Lump Sum Principle© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.31•Fixed proportions x*=I/[px + 0.25py] and y*=I/[4px+py]•The indirect utility function
4.3 Indirect Utility and the Lump Sum Principle© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.32•The lump sum principle•Cobb-Douglas–If a tax of $1 was imposed on good x•The individual will purchase x* = 2•Indirect utility will fall from 2 to 1.41–An equal-revenue tax will reduce income to $6•Indirect utility will fall from 2 to 1.5
4.3 Indirect Utility and the Lump Sum Principle© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.33•The lump sum principle•Fixed-proportions–If a tax of $1 was imposed on good x•Indirect utility will fall from 4 to 8/3–An equal-revenue tax will reduce income to $16/3•Indirect utility will fall from 4 to 8/3•Since preferences are rigid, the tax on x does not distort choices
Expenditure Minimization•Dual minimization problem for utility maximization–Allocate income to achieve a given level of utility with the minimal expenditure•The goal and the constraint have been reversed© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.34
4.6 The Dual Expenditure-Minimization ProblemThe dual of the utility-maximization problem is to attain a given utility level (U2) with minimal expenditures. An expenditure level of E1 does not permit U2 to be reached, whereas E3 provides more spending power than is strictly necessary. With expenditure E2, this person can just reach U2 by consuming x and y.© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.35E2Quantity of xQuantity of yU2E1E3BCAy*x*
Expenditure Minimization•The individual’s problem is to choose x1,x2,…,xn to minimizetotal expenditures = E = p1x1 + p2x2 +…+ pnxn subject to the constraintutility = Ū = U(x1,x2,…,xn)–The optimal amounts of x1,x2,…,xn will depend on the prices of the goods and the required utility level© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.36
Expenditure Minimization•Expenditure function–The individual’s expenditure function –Shows the minimal expenditures–Necessary to achieve a given utility level –For a particular set of prices –Also a value function•minimal expenditures = E(p1,p2,…,pn,U)© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.37
Expenditure Minimization•The expenditure function and the indirect utility function –Are inversely related–Both depend on market prices –But involve different constraints (income or utility) © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.38
4.4 Two Expenditure Functions© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.39•Cobb-Douglas –The indirect utility function in the two-good case:–If we interchange the role of utility and income (expenditure), we will have the expenditure function E(px,py,U) = 2px0.5py0.5U
4.4 Two Expenditure Functions© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.40•Fixed-proportions case–The indirect utility function:•If we interchange the role of utility and income (expenditure), we will have the expenditure function E(px,py,U) = (px + 0.25py)U
Properties of Expenditure Functions•Homogeneity–A doubling of all prices will precisely double the value of required expenditures•Homogeneous of degree one•Nondecreasing in prices–E/pi 0 for every good, i•Concave in prices –Functions that always lie below tangents to them© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.41
4.7 Expenditure Functions Are Concave in PricesAt p1 this person spends E(p1* , . . .). If he or she continues to buy the same set of goods as p1 changes, then expenditures would be given by Epseudo. Because his or her consumption patterns will likely change as p1 changes, actual expenditures will be less than this.© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.42E(p1,…)Epseudop1E(p1,…)E(p*1,…)E(p*1, …)
Budget Shares© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.43•Engel’s law –Fraction of income spent on food decreases as income increases•Budget shares, si=pixi / I•Recent budget share data–Engel’s law is clearly visible•Cobb–Douglas utility function –Is not useful for detailed empirical studies of household behavior
E4.1 Budget shares of U.S. households, 2008© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.44Annual Income$10,000−$14,999$40,000−$49,999Over $70,000Expenditure ItemFood15.713.411.8Shelter23.121.219.3Utilities, fuel, and public services11.28.65.8Transportation14.117.816.8Health insurance5.34.02.6Other health-care expenses2.62.82.3Entertainment (including alcohol)4.65.25.8Education2.31.22.6Insurance and pensions2.28.514.6Other (apparel, personal care, other housing expenses, and misc.)18.917.318.4
Linear expenditure system© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.45•Generalization of the Cobb–Douglas function–Incorporates the idea that certain minimal amounts of each good must be bought by an individual (x0, y0)U(x,y)=(x-x0)(y-y0) •For x ≥ x0 and y ≥ y0, •Where +=1
Linear expenditure system© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.46•Supernumerary income (I*)–Amount of purchasing power remaining after purchasing the minimum bundle I*=I-pxx0-pyy0 •The demand functions are: x = (pxx0+I*)/px and y = (pyy0+I*)/py –The share equations: sx= +(pxx0-pyy0)/I sy= +(pyy0 -pxx0)/I•Not homothetic
CES utility© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.47•CES utility function•Budget shares:sx=1/[1+(py/px)K] and sy=1/[1+(px/py)K]•Where K = /(-1)•Homothetic
The almost ideal demand system© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.48•Expenditure functions–Logarithmic differentiation
The almost ideal demand system© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.49•Almost ideal demand system–Expenditure function•Almost ideal demand system–Expenditure function •Homogeneous of degree one in the prices – a1+a2=1, b1+b2=0, b2+b3=0, and c1+c2=0
The almost ideal demand system© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.50
MICROECONOMICTHEORYBASICPRINCIPLESANDEXTENSIONSTENTHEDITION
This page intentionally left blank
MICROECONOMICTHEORYBASICPRINCIPLESANDEXTENSIONSTENTHEDITIONWalterNicholsonAmherstCollegeChristopherSnyderDartmouthCollege
VP/EditorialDirector:JackW.CalhounEditor-in-Chief:AlexvonRosenbergExecutiveEditor:MikeRocheSr.DevelopmentalEditor:SusanSmartSr.ContentProjectManager:CliffKallemeynProductionTechnologyAnalyst:AdamGrafaExecutiveMarketingManager:BrianJoynerSr.MarketingManager:JohnCareyArtDirector:MichelleKunklerSr.FirstPrintBuyer:SandeeMilewskiPrinter:WestGroupEagan,MNMicroeconomicTheoryBasicPrinciplesandExtensionsTenthEditionWalterNicholsonChristopherSnyderCOPYRIGHT©2008,2005ThomsonSouth-Western,apartofTheThomsonCorporation.Thomson,theStarlogo,andSouth-Westernaretrademarksusedhereinunderlicense.PrintedintheUnitedStatesofAmerica1234510090807ISBN13:978-0-324-42162-0ISBN10:0-324-42162-1ALLRIGHTSRESERVED.Nopartofthisworkcoveredbythecopyrighthereonmaybereproducedorusedinanyformorbyanymeans—graphic,elec-tronic,ormechanical,includingphotocopying,recording,taping,Webdistributionorinformationstorageandretrievalsystems,orinanyothermanner—withoutthewrittenpermissionofthepublisher.Forpermissiontousematerialfromthistextorproduct,submitarequestonlineathttp://www.thomsonrights.com.LibraryofCongressControlNumber:2007921464ThomsonHigherEducation5191NatorpBoulevardMason,OH45040USAFormoreinformationaboutourproducts,contactusat:ThomsonLearningAcademicResourceCenter1-800-423-0563
ToBeth,Sarah,David,Sophia,andAbbyToMaura
This page intentionally left blank
AbouttheAuthorsWalterNicholsonistheWardH.PattonProfessorofEconomicsatAmherstCollege.HereceivedhisB.A.inmathematicsfromWilliamsCollegeandhisPh.D.ineconomicsfromMIT.ProfessorNicholson’sprincipalresearchinterestsareintheeconometricanalysesoflabormarketproblemsincludingunemployment,jobtraining,andtheimpactofinter-nationaltrade.Heisalsotheco-author(withChrisSnyder)ofIntermediateMicroeconomicsandItsApplication,TenthEdition(Thomson/South-Western,2007).ProfessorNicholsonandhiswife,Susan,liveinAmherst,Massachusetts,andNaples,Florida.Whatwaspreviouslyaverybusyhousehold,withfourchildreneverywhere,isnowratherempty.Butanever-increasingnumberofgrandchildrenbreathesomelifeintotheseplaceswhenevertheyvisit,whichseemsfartooseldom.ChristopherM.SnyderisaProfessorofEconomicsatDartmouthCollege.HereceivedhisB.A.ineconomicsandmathematicsfromFordhamUniversityandhisPh.D.ineconomicsfromMIT.BeforecomingtoDartmouthin2005,hetaughtatGeorgeWashingtonUniversityforoveradecade,andhehasbeenavisitingprofessorattheUniversityofChicagoandMIT.HeiscurrentlyPresidentoftheIndustrialOrganizationSocietyandAssociateEditoroftheInternationalJournalofIndustrialOrganizationandReviewofIndustrialOrganization.Hisresearchcoversvarioustheoreticalandempiricaltopicsinindustrialorganization,contracttheory,andlawandeconomics.ProfessorSnyderandhiswifeMauraDoyle(whoalsoteacheseconomicsatDartmouth)livewithinwalkingdistanceofcampusinHanover,NewHampshire,withtheirthreeelementary-school-ageddaughters.
This page intentionally left blank
BriefContentsPart1IntroductionChapter1:EconomicModels3Chapter2:MathematicsforMicroeconomics19Part2ChoiceandDemandChapter3:PreferencesandUtility87Chapter4:UtilityMaximizationandChoice113Chapter5:IncomeandSubtitutionEffects141Chapter6:DemandRelationshipsamongGoods182Chapter7:UncertaintyandInformation202Chapter8:StrategyandGameTheory236Part3ProductionandSupplyChapter9:ProductionFunctions295Chapter10:CostFunctions323Chapter11:ProfitMaximization358Part4CompetitiveMarketsChapter12:ThePartialEquilibriumCompetitiveModel391Chapter13:GeneralEquilibriumandWelfare441Part5MarketPowerChapter14:Monopoly491Chapter15:ImperfectCompetition521Part6PricinginInputMarketsChapter16:LaborMarkets573Chapter17:CapitalandTime595Part7MarketFailureChapter18:AsymmetricInformation627Chapter19:ExternalitiesandPublicGoods670ix
BriefAnswerstoQueries701SolutionstoOdd-NumberedProblems711GlossaryofFrequentlyUsedTerms721Index727xBriefContents
ContentsPrefacexixPART1INTRODUCTION1CHAPTER1EconomicModels3TheoreticalModels3VerificationofEconomicModels3GeneralFeaturesofEconomicModels5DevelopmentoftheEconomicTheoryofValue8ModernDevelopments16Summary17SuggestionsforFurtherReading18CHAPTER2MathematicsforMicroeconomics19MaximizationofaFunctionofOneVariable19FunctionsofSeveralVariables23MaximizationofFunctionsofSeveralVariables28ImplicitFunctions31TheEnvelopeTheorem32ConstrainedMaximization36EnvelopeTheoreminConstrainedMaximizationProblems42InequalityConstraints43Second-OrderConditions45HomogeneousFunctions53Integration56DynamicOptimization60MathematicalStatistics64Summary74Problems75SuggestionsforFurtherReadings79Extensions:Second-OrderConditionsandMatrixAlgebra81xi
PART2CHOICEANDDEMAND85CHAPTER3PreferencesandUtility87AxiomsofRationalChoice87Utility88TradesandSubstitution91AMathematicalDerivation97UtilityFunctionsforSpecificPreferences100TheMany-GoodCase104Summary105Problems106SuggestionsforFurtherReading109Extensions:SpecialPreferences110CHAPTER4UtilityMaximizationandChoice113AnInitialSurvey114TheTwo-GoodCase:AGraphicalAnalysis114Then-GoodCase118IndirectUtilityFunction124TheLumpSumPrinciple125ExpenditureMinimization127PropertiesofExpenditureFunctions130Summary132Problems132SuggestionsforFurtherReading136Extensions:BudgetShares137CHAPTER5IncomeandSubstitutionEffects141DemandFunctions141ChangesinIncome143ChangesinaGood’sPrice144TheIndividual’sDemandCurve148CompensatedDemandCurves151AMathematicalDevelopmentofResponsetoPriceChanges155DemandElasticities158ConsumerSurplus165RevealedPreferenceandtheSubstitutionEffect169Summary172Problems173xiiContents
SuggestionsforFurtherReading176Extensions:DemandConceptsandtheEvaluationofPriceIndices178CHAPTER6DemandRelationshipsAmongGoods182TheTwo-GoodCase182SubstitutesandComplements184NetSubstitutesandComplements186SubstitutabilitywithManyGoods188CompositeCommodities188HomeProduction,AttributesofGoods,andImplicitPrices191Summary195Problems195SuggestionsforFurtherReading199Extensions:SimplifyingDemandandTwo-StageBudgeting200CHAPTER7UncertaintyandInformation202MathematicalStatistics202FairGamesandtheExpectedUtilityHypothesis203ThevonNeumann–MorgensternTheorem205RiskAversion207MeasuringRiskAversion209ThePortfolioProblem214TheState-PreferenceApproachtoChoiceunderUncertainty216TheEconomicsofInformation221PropertiesofInformation221TheValueofInformation222FlexibilityandOptionValue224AsymmetryofInformation225Summary226Problems226SuggestionsforFurtherReading231Extensions:PortfoliosofManyRiskAssets232CHAPTER8StrategyandGameTheory236BasicConcepts236Prisoners’Dilemma237NashEquilibrium240Contentsxiii
MixedStrategies247Existence251ContinuumofActions252SequentialGames255RepeatedGames259IncompleteInformation268SimultaneousBayesianGames268SignalingGames273ExperimentalGames281EvolutionaryGamesandLearning282Summary283Problems284SuggestionsforFurtherReading287Extensions:ExistenceofNashEquilibrium288PART3PRODUCTIONANDSUPPLY293CHAPTER9ProductionFunctions295MarginalProductivity295IsoquantMapsandtheRateofTechnicalSubstitution298ReturnstoScale302TheElasticityofSubstitution305FourSimpleProductionFunctions306TechnicalProgress311Summary315Problems315SuggestionsforFurtherReading319Extensions:Many-InputProductionFunctions320CHAPTER10CostFunctions323DefinitionsofCost323Cost-MinimizingInputChoices325CostFunctions330CostFunctionsandShiftsinCostCurves334Shephard’sLemmaandtheElasticityofSubstitution344Short-Run,Long-RunDistinction344Summary350Problems351xivContents
SuggestionsforFurtherReading354Extensions:TheTranslogCostFunction355CHAPTER11ProfitMaximization358TheNatureandBehaviorofFirms358ProfitMaximization359MarginalRevenue361Short-RunSupplybyaPrice-TakingFirm365ProfitFunctions369ProfitMaximizationandInputDemand374Summary380Problems381SuggestionsforFurtherReading385Extensions:ApplicationsoftheProfitFunction386PART4COMPETITIVEMARKETS389CHAPTER12ThePartialEquilibriumCompetitiveModel391MarketDemand391TimingoftheSupplyResponse395PricingintheVeryShortRun395Short-RunPriceDetermination396ShiftsinSupplyandDemandCurves:AGraphicalAnalysis401MathematicalModelofMarketEquilibrium403Long-RunAnalysis406Long-RunEquilibrium:ConstantCostCase407ShapeoftheLong-RunSupplyCurve410Long-RunElasticityofSupply412ComparativeStaticsAnalysisofLong-RunEquilibrium413ProducerSurplusintheLongRun416EconomicEfficiencyandWelfareAnalysis419PriceControlsandShortages422TaxIncidenceAnalysis423TradeRestrictions427Summary431Problems432SuggestionsforFurtherReading436Extensions:DemandAggregationandEstimation438Contentsxv
CHAPTER13GeneralEquilibriumandWelfare441PerfectlyCompetitivePriceSystem441ASimpleGraphicalModelofGeneralEquilibriumwithTwoGoods442ComparativeStaticsAnalysis451GeneralEquilibriumModelingandFactorPrices453ExistenceofGeneralEquilibriumPrices455GeneralEquilibriumModels462WelfareEconomics466EfficiencyinOutputMix469CompetitivePricesandEfficiency:TheFirstTheoremofWelfareEconomics471DepartingfromtheCompetitiveAssumptions475DistributionandtheSecondTheoremofWelfareEconomics476Summary481Problems482SuggestionsforFurtherReading486Extensions:ComputableGeneralEquilibriumModels487PART5MARKETPOWER489CHAPTER14Monopoly491BarrierstoEntry491ProfitMaximizationandOutputChoice493MonopolyandResourceAllocation497Monopoly,ProductQuality,andDurability501PriceDiscrimination503Second-DegreePriceDiscriminationthroughPriceSchedules508RegulationofMonopoly510DynamicViewsofMonopoly513Summary513Problems514SuggestionsforFurtherReading518Extensions:OptimalLinearTwo-partTariffs519CHAPTER15ImperfectCompetition521Short-RunDecisions:PricingandOutput521BertrandModel523xviContents
CournotModel524CapacityConstraints531ProductDifferentiation531TacitCollusion537Longer-RunDecisions:Investment,Entry,andExit541StrategicEntryDeterrence547Signaling551HowManyFirmsEnter?554Innovation558Summary560Problems561SuggestionsforFurtherReading565Extensions:StrategicSubstitutesandComplements566PART6PRICINGININPUTMARKETS571CHAPTER16LaborMarkets573AllocationofTime573AMathematicalAnalysisofLaborSupply576MarketSupplyCurveforLabor580LaborMarketEquilibrium581MonopsonyintheLaborMarket584LaborUnions586Summary589Problems590SuggestionsforFurtherReading594CHAPTER17CapitalandTime595CapitalandtheRateofReturn595DeterminingtheRateofReturn597TheFirm’sDemandforCapital604PresentDiscountedValueApproachtoInvestmentDecisions606NaturalResourcePricing611Summary614Problems614SuggestionsforFurtherReading618Appendix:TheMathematicsofCompoundInterest619Contentsxvii
PART7MARKETFAILURE625CHAPTER18AsymmetricInformation627ComplexContractsasaResponsetoAsymmetricInformation627Principal-AgentModel629HiddenActions630Owner-ManagerRelationship632MoralHazardinInsurance637HiddenTypes642NonlinearPricing642AdverseSelectioninInsurance650MarketSignaling657Auctions659Summary663Problems663SuggestionsforFurtherReading666Extensions:NonlinearPricingwithaContinuumofTypes667CHAPTER19ExternalitiesandPublicGoods670DefiningExternalities670ExternalitiesandAllocativeInefficiency672SolutionstotheExternalityProblem675AttributesofPublicGoods679PublicGoodsandResourceAllocation680LindahlPricingofPublicGoods684VotingandResourceAllocation687ASimplePoliticalModel690VotingMechanisms692Summary694Problems694SuggestionsforFurtherReading698Extensions:PollutionAbatement699BriefAnswerstoQueries701SolutionstoOdd-NumberedProblems711GlossaryofFrequentlyUsedTerms721Index727xviiiContents
PrefaceThe10theditionofMicroeconomicTheory:BasicPrinciplesandExtensionsrepresentsbothacontinuationofahighlysuccessfultreatmentofmicroeconomicsatarelativelyadvancedlevelandamajorchangefromthepast.Thischange,ofcourse,isthatChrisSnyderhasjoinedmeasaco-author.Hisinsightshaveimprovedallsectionsofthebook,especiallywithrespecttoitscoverageofgametheory,industrialorganization,andmodelsofimperfectinformation.Henceinmanywaysthisisanewbook,althoughonmattersofstyleandpedagogyitretainsmuchofwhathasmadeitsuccessfulformorethan35years.Thisbasicapproachistofocusonbuildingintuitionabouteconomicmodelswhileprovidingstudentswiththemathematicaltoolsneededtogofurtherintheirstudies.Thetextalsoseekstofacilitatethatlinkagebyprovidingmanynumericalexamples,advancedproblems,andextendeddiscussionsofempiricalimplementation—allofwhichareintendedtoshowstudentshowmicroeconomictheoryisusedtoday.Newdevelopmentshavemadethefieldmoreexcitingthanever,andIhopethiseditionmanagestocapturethatexcitement.NEWTOTHETENTHEDITIONTheprimarychangetothiseditionhasbeentheinclusionofthreeentirelynewchapterswrittenbyChrisSnyder:anextendedandmoreadvancedtreatmentofbasicgametheoryconcepts(Chapter8);athoroughlyreworkedandexpandedchapteronmodelsusedinindustrialorgani-zationtheory(Chapter15);andacompletelynewchapteronasymmetricinformationthatfocusesontheprincipal–agentproblemandmoderncontracttheory(Chapter18).Theimportanceoftheseadditionstotheoverallqualityofthetextcannotbeoverstated.Becausethetopicscoveredinthesenewchaptersconstitutesomeofthemostimportantgrowthareasinmicroeconomics,thebookisnowwellpositionedformanyyearsintothefuture.Severalotherchaptersofthebookhaveundergonemajorrevisionsforthisedition.Asignificantamountofmaterialhasbeenaddedtothechapteronmathematicalbackground(Chapter2);newtopicsinclude:anexpandedcoverageofintegration,basicmodelsofdynamicoptimization,andabriefintroductiontomathematicalstatistics.Thematerialonuncertaintyandriskaversionhasbeenthoroughlyrevisedandupdated(Chapter7).Muchofthetheoryofthefirm,especiallyofthefirm’sdemandsforinputs,hasbeenexpanded(Chapters9–11).xix
Thechapterongeneralequilibriummodeling(Chapter13)hasbeenthoroughlyreworkedwiththegoalofprovidingstudentswithmoredetailsabouthowcompu-tablegeneralequilibriummodelsactuallywork.Thechapteroncapitalandtime(Chapter17)hasbeensignificantlyexpandedtoincludemoreonoptimalsavingsbehaviorandonresourceallocationovertime.Numerousminorchangeshavealsobeenmadeinthecoverageandorganizationofthebooktoensurethatitcontinuestoprovideclearandup-to-datecoverageofallofthetopicsexamined.Twomodificationshavebeenmadetothetexttoenhanceitslinkagetomoregeneraleconomicliterature.First,theproblemshavebeencategorizedintotwotypes:basicproblemsandanalyticalproblems.Whereasthebasicproblemsareintendedtoreinforceconceptsfromthetext,theanalyticalproblemsareintendedtoallowthestudenttogofurtherbyshowingthemhowtoobtainresultsontheirown.Thenumberofsuchproblemshasbeensignificantlyexpandedinthisedition.Manyoftheanalyticalproblemsprovidereferencessothatstudentswhowishtopursuethetopiccanreadmore.Asecondmodificationofthetexthasbeentoexpandandrewritemanyoftheend-of-chapterExtensions.ThecommongoaloftheserevisedExtensionsistoprovidestudentsbetterlinkagebetweenthetheoreticalmaterialinthetextandthatmaterial’suseinactualempiricalapplications.Therefore,manyoftheExtensionsintroducethefunctionalformscustomarilyusedaswellassomeoftheeconometricissuesfacedbyresearcherswhenusingavailabledata.TheExtensionsarethusintendedtoshowstudentstheimportanceofjoiningmicroeconomictheoryandeconometricpractice.SUPPLEMENTSTOTHETEXTThethoroughlyrevisedancillariesforthiseditionincludethefollowing.TheSolutionsManualandTestBank(bythetextauthors).TheSolutionsManualcontainscommentsandsolutionstoallproblemsandisavailabletoalladoptinginstructorsinbothprintandelectronicversions.TheSolutionsManualandTestBankmaybedownloadedonlybyqualifiedinstructorsatthetextbooksupportWebsite(www.thomsonedu.com/economics/nicholson).PowerPointLecturePresentationSlides(byLindaGhent,EasternIllinoisUniversity).PowerPointslidesforeachchapterofthetextprovideathoroughsetofoutlinesforclassroomuseorforstudentsasastudyaid.Instructorsandstudentsmaydown-loadtheseslidesfromthebook’sWebsite(www.thomsonedu.com/economics/nicholson).ONLINERESOURCESThomsonSouth-Westernprovidesstudentsandinstructorswithasetofvaluableonlineresourcesthatareaneffectivecomplementtothistext.EachnewcopyofthebookcomeswitharegistrationcardthatprovidesaccesstoEconomicApplicationsandInfoTracCollegeEdition.EconomicApplicationsThepurchaseofthisnewtextbookincludescomplimentaryaccesstoSouth-Western’sEconomicApplications(EconApps)Website.TheEconAppsWebsiteincludesasuiteofxxPreface
regularlyupdatedWebfeaturesforeconomicsstudentsandinstructors:EconDebateOnline,EconNewsOnline,EconDataOnline,andEconLinksOnline.Theseresourcescanhelpstudentsdeepentheirunderstandingofeconomicconceptsbyanalyzingcurrentnewsstories,policydebates,andeconomicdata.EconAppscanalsohelpinstructorsdevelopassignments,casestudies,andexamplesbasedonreal-worldissues.EconDebatesOnlineprovidescurrentcoverageofeconomicspolicydebates;itincludesaprimerontheissues,linkstobackgroundinformation,andcommentaries.EconNewsOnlinesummarizesrecenteconomicsnewsstoriesandoffersquestionsforfurtherdiscussion.EconDataOnlinepresentscurrentandhistoricaleconomicdatawithaccompanyingcom-mentary,analysis,andexercises.EconLinksOnlineoffersanavigationpartnerforexploringeconomicsontheWebviaalistofkeytopiclinks.StudentsbuyingausedbookcanpurchaseaccesstotheEconAppssiteathttp://econapps.swlearning.com.InfoTracCollegeEditionThepurchaseofthisnewtextbookalsocomeswithfourmonthsofaccesstoInfoTrac.Thispowerfulandsearchableonlinedatabaseprovidesaccesstofulltextarticlesfrommorethanathousanddifferentpublicationsrangingfromthepopularpresstoscholarlyjournals.Instructorscansearchtopicsandselectreadingsforstudents,andstudentscansearcharticlesandreadingsforhomeworkassignmentsandprojects.Thepublicationscoveravarietyoftopicsandincludearticlesthatrangefromcurrenteventstotheoreticaldevelopments.InfoTracCollegeEditionoffersinstructorsandstudentstheabilitytointegratescholarshipandapplicationsofeconomicsintothelearningprocess.ACKNOWLEDGMENTSInpreparationforundertakingthisrevision,wereceivedveryhelpfulreviewsfrom:TiborBesedes,LouisianaStateUniversityElaineP.Catilina,AmericanUniversityYiDeng,SouthernMethodistUniversitySilkeForbes,UniversityofCalifornia–SanDiegoJosephP.Hughes,RutgersUniversityQihongLiu,UniversityofOklahomaRaganPetrie,GeorgiaStateUniversityWehaveusuallytriedtofollowtheirgoodadvice,butofcoursenoneoftheseindividualsbearsanyresponsibilityforthefinaloutcome.Thiseditionofthebookisthefirstthatwaswrittenwithmyco-author,ChrisSnyderofDartmouthCollege.IhavebeenverypleasedwiththeworkingrelationshipwehavedevelopedandwithChris’sfriendship.Ihopemanymoreeditionswillfollow.IamalsoindebtedtotheteamatThomsonSouth-WesternandespeciallytoSusanSmartforonceagainbringingherorganizingandcajolingskillstothisedition.Duringhertemporaryabsencefromtheproject,wewerecompletelylost.Prefacexxi
Copyeditingthismanuscriptwas,Iknow,arealchore.ThoseatNewgen-Austindidagreatjobofpenetratingourmessymanuscriptstoobtainsomethingthatactuallymakessense.ThedesignofthetextbyMichelleKunklersucceededinachievingtwoseeminglyirreconcilablegoals—makingthetextbothcompactandeasytoread.CliffKallemeyndidafinejobofkeepingtheproductionontrack;Iespeciallyappreciatedthewayhecoordinatedthecopyeditingandpageproductionprocesses.Asalways,myAmherstCollegecolleaguesandstudentsdeservesomeofthecreditforthisnewedition.FrankWesthoffhasbeenmymostfaithfuluserofthistextovermanyyears.Thistime(withhispermission,Ithink)Iactuallyliftedsomeofhisworkongeneralequilibriumtosignificantlyimprovethatportionofthetext.Tothelistofformerstudents—MarkBruni,EricBudish,AdrianDillon,DavidMacoy,TatyanaMamut,KatieMerrill,JordanMilev,DougNorton,andJeffRodman—whoseeffortsarestillevidentIcannowaddthenameofAnoopMenon,whohelpedmesolveproblemswhenIranoutofpatiencewiththealgebra.Asalways,specialthanksagaingotomywifeSusan;afterseeingtwentyeditionsofmymicroeconomicstextscomeandgo,shemustsurelyhopethateventhisgoodthingmusteventuallycometoanend.Mychildren(Kate,David,Tory,andPaul)allseemtobelivinghappyandproductivelivesdespiteaseverelackofmicroeconomiceducation.Asthenextgeneration(Beth,Sarah,David,Sophia,andAbby)growsolder,perhapstheywillseekenlightenment—atleasttotheextentofwonderingwhatthebooksdedicatedtothemareallabout.WalterNicholsonAmherst,MassachusettsJune2007ItwasaprivilegetocollaboratewithWalteronthistenthedition.IusedthistextbookinthefirstcourseIevertaught,asagraduateinstructoratMIT,andIhaveenjoyedusingitinmymicroeconomicscoursesinthethirteenyearssince.Ihavealwaysappreciatedthetext’sambitiouscoverageoftheconceptsandmethodsusedbyprofessionaleconomistsaswellasitsaccessibilitytostudents,whichisenhancedbynumerouselegantexamplestogetherwithWalter’slucidprose.Itwasachallengetomaintainthishighstandardwithmycon-tribution—althoughthiswasmadeeasierbyWalter’ssuggestions,patience,andexample,forwhichIamgrateful.Iencourageteachersandstudentstoe-mailmewithanycommentsonthetext(Christopher.M.Snyder@dartmouth.edu).IwouldliketoaddmywholeheartedthankstothosewhomWalteracknowledgedforcontributingtothebook.IalsothankGretchenOttoandhercolleaguesatNewgen–AustinaswellasMattDarnellforcarefullycopyeditingmyportionoftherevision.IthankDartmouthCollegeforprovidingtheresourcesandenvironmentthatgreatlyfacilitatedwritingthebook.Ithankmycolleaguesintheeconomicsdepartmentforhelpfuldiscussionsandunderstanding.Committingtosuchanextensiveprojectisinsomesenseafamilydecision.Iamindebtedtomywife,Maura,foraccommodatingthemanylatenightsthatwererequiredandforlisteningtomymonotonousprogressreports.Ithankmydaughters,Clare,Tess,andMeg,fortheirgoodbehavior,whichexpeditedthewritingprocess.ChristopherSnyderHanover,NewHampshireJune2007xxiiPreface
PART1IntroductionCHAPTER1EconomicModelsCHAPTER2MathematicsforMicroeconomicsThispartcontainsonlytwochapters.Chapter1examinesthegeneralphilosophyofhoweconomistsbuildmodelsofeconomicbehavior.Chapter2thenreviewssomeofthemathematicaltoolsusedintheconstructionofthesemodels.ThemathematicaltoolsfromChapter2willbeusedthroughouttheremainderofthisbook.
This page intentionally left blank
CHAPTER1EconomicModelsThemaingoalofthisbookistointroduceyoutothemostimportantmodelsthateconomistsusetoexplainthebehaviorofconsumers,firms,andmarkets.Thesemodelsarecentraltothestudyofallareasofeconomics.Therefore,itisessentialtounderstandboththeneedforsuchmodelsandthebasicframeworkusedtodevelopthem.Thegoalofthischapteristobeginthisprocessbyoutliningsomeoftheconceptualissuesthatdeterminethewaysinwhicheconomistsstudypracticallyeveryquestionthatintereststhem.THEORETICALMODELSAmoderneconomyisacomplicatedentity.Thousandsoffirmsengageinproducingmillionsofdifferentgoods.Manymillionsofpeopleworkinallsortsofoccupationsandmakedecisionsaboutwhichofthesegoodstobuy.Let’susepeanutsasanexample.Peanutsmustbeharvestedattherighttimeandshippedtoprocessorswhoturnthemintopeanutbutter,peanutoil,peanutbrittle,andnumerousotherpeanutdelicacies.Theseprocessors,inturn,mustmakecertainthattheirproductsarriveatthousandsofretailoutletsintheproperquantitiestomeetdemand.Becauseitwouldbeimpossibletodescribethefeaturesofeventhesepeanutmarketsincompletedetail,economistshavechosentoabstractfromthecomplexitiesoftherealworldanddeveloprathersimplemodelsthatcapturethe“essentials.”Justasaroadmapishelpfuleventhoughitdoesnotrecordeveryhouseoreverystore,economicmodelsof,say,themarketforpeanutsarealsousefuleventhoughtheydonotrecordeveryminutefeatureofthepeanuteconomy.Inthisbookwewillstudythemostwidelyusedeconomicmodels.Wewillseethat,eventhoughthesemodelsoftenmakeheroicabstractionsfromthecomplexitiesoftherealworld,theynonethelesscaptureessentialfeaturesthatarecommontoalleconomicactivities.Theuseofmodelsiswidespreadinthephysicalandsocialsciences.Inphysics,thenotionofa“perfect”vacuumoran“ideal”gasisanabstractionthatpermitsscientiststostudyreal-worldphenomenainsimplifiedsettings.Inchemistry,theideaofanatomoramoleculeisactuallyasimplifiedmodelofthestructureofmatter.Architectsusemock-upmodelstoplanbuildings.Televisionrepairersrefertowiringdiagramstolocateproblems.Economists’modelsperformsimilarfunctions.Theyprovidesimplifiedportraitsofthewayindividualsmakedecisions,thewayfirmsbehave,andthewayinwhichthesetwogroupsinteracttoestablishmarkets.VERIFICATIONOFECONOMICMODELSOfcourse,notallmodelsprovetobe“good.”Forexample,theearth-centeredmodelofplanetarymotiondevisedbyPtolemywaseventuallydiscardedbecauseitprovedincapableofaccuratelyexplaininghowtheplanetsmovearoundthesun.Animportantpurposeofscientificinvestigationistosortoutthe“bad”modelsfromthe“good.”Twogeneralmethodshave3
beenusedforverifyingeconomicmodels:(1)adirectapproach,whichseekstoestablishthevalidityofthebasicassumptionsonwhichamodelisbased;and(2)anindirectapproach,whichattemptstoconfirmvaliditybyshowingthatasimplifiedmodelcorrectlypredictsreal-worldevents.Toillustratethebasicdifferencesbetweenthetwoapproaches,let’sbrieflyexamineamodelthatwewilluseextensivelyinlaterchaptersofthisbook—themodelofafirmthatseekstomaximizeprofits.Theprofit-maximizationmodelThemodelofafirmseekingtomaximizeprofitsisobviouslyasimplificationofreality.Itignoresthepersonalmotivationsofthefirm’smanagersanddoesnotconsiderconflictsamongthem.Itassumesthatprofitsaretheonlyrelevantgoalofthefirm;otherpossiblegoals,suchasobtainingpowerorprestige,aretreatedasunimportant.Themodelalsoassumesthatthefirmhassufficientinformationaboutitscostsandthenatureofthemarkettowhichitsellstodiscoveritsprofit-maximizingoptions.Mostreal-worldfirms,ofcourse,donothavethisinformationreadilyavailable.Yet,suchshortcomingsinthemodelarenotnecessarilyserious.Nomodelcanexactlydescribereality.Therealquestioniswhetherthissimplemodelhasanyclaimtobeingagoodone.TestingassumptionsOnetestofthemodelofaprofit-maximizingfirminvestigatesitsbasicassumption:Dofirmsreallyseekmaximumprofits?Someeconomistshaveexaminedthisquestionbysendingques-tionnairestoexecutives,askingthemtospecifythegoalstheypursue.Theresultsofsuchstudieshavebeenvaried.Businesspeopleoftenmentiongoalsotherthanprofitsorclaimtheyonlydo“thebesttheycan”toincreaseprofitsgiventheirlimitedinformation.Ontheotherhand,mostrespondentsalsomentionastrong“interest”inprofitsandexpresstheviewthatprofitmaximizationisanappropriategoal.Testingtheprofit-maximizingmodelbytestingitsassumptionshasthereforeprovidedinconclusiveresults.TestingpredictionsSomeeconomists,mostnotablyMiltonFriedman,denythatamodelcanbetestedbyinquiringintothe“reality”ofitsassumptions.1Theyarguethatalltheoreticalmodelsarebasedon“unrealistic”assumptions;theverynatureoftheorizingdemandsthatwemakecertainab-stractions.Theseeconomistsconcludethattheonlywaytodeterminethevalidityofamodelistoseewhetheritiscapableofpredictingandexplainingreal-worldevents.Theultimatetestofaneconomicmodelcomeswhenitisconfrontedwithdatafromtheeconomyitself.Friedmanprovidesanimportantillustrationofthatprinciple.Heaskswhatkindofatheoryoneshouldusetoexplaintheshotsexpertpoolplayerswillmake.Hearguesthatthelawsofvelocity,momentum,andanglesfromtheoreticalphysicswouldbeasuitablemodel.Poolplayersshootshotsasiftheyfollowtheselaws.Butmostplayersaskedwhethertheypreciselyunderstandthephysicalprinciplesbehindthegameofpoolwillundoubtedlyanswerthattheydonot.Nonetheless,Friedmanargues,thephysicallawsprovideveryaccuratepredictionsandthereforeshouldbeacceptedasappropriatetheoreticalmodelsofhowexpertsplaypool.Atestoftheprofit-maximizationmodel,then,wouldbeprovidedbypredictingthebehaviorofreal-worldfirmsbyassumingthatthesefirmsbehaveasiftheyweremaximizingprofits.(SeeExample1.1laterinthischapter.)Ifthesepredictionsarereasonablyinaccordwithreality,wemayaccepttheprofit-maximizationhypothesis.However,wewouldreject1SeeM.Friedman,EssaysinPositiveEconomics(Chicago:UniversityofChicagoPress,1953),chap.1.Foranalternativeviewstressingtheimportanceofusing“realistic”assumptions,seeH.A.Simon,“RationalDecisionMakinginBusinessOrganizations,”AmericanEconomicReview69,no.4(September1979):493–513.4Part1Introduction
themodelifreal-worlddataseeminconsistentwithit.Hence,theultimatetestofeithertheoryisitsabilitytopredictreal-worldevents.ImportanceofempiricalanalysisTheprimaryconcernofthisbookistheconstructionoftheoreticalmodels.Butthegoalofsuchmodelsisalwaystolearnsomethingabouttherealworld.Althoughtheinclusionofalengthysetofappliedexampleswouldneedlesslyexpandanalreadybulkybook,2theEx-tensionsincludedattheendofmanychaptersareintendedtoprovideatransitionbetweenthetheorypresentedhereandthewaysinwhichthattheoryisactuallyappliedinempiricalstudies.GENERALFEATURESOFECONOMICMODELSThenumberofeconomicmodelsincurrentuseis,ofcourse,verylarge.Specificassumptionsusedandthedegreeofdetailprovidedvarygreatlydependingontheproblembeingaddressed.ThemodelsemployedtoexplaintheoveralllevelofeconomicactivityintheUnitedStates,forexample,mustbeconsiderablymoreaggregatedandcomplexthanthosethatseektointerpretthepricingofArizonastrawberries.Despitethisvariety,however,practicallyalleconomicmodelsincorporatethreecommonelements:(1)theceterisparibus(otherthingsthesame)assumption;(2)thesuppositionthateconomicdecisionmakersseektooptimizesomething;and(3)acarefuldistinctionbetween“positive”and“normative”questions.Becausewewillencountertheseelementsthroughoutthisbook,itmaybehelpfulattheoutsettobrieflydescribethephilosophybehindeachofthem.TheceterisparibusassumptionAsinmostsciences,modelsusedineconomicsattempttoportrayrelativelysimplerela-tionships.Amodelofthemarketforwheat,forexample,mightseektoexplainwheatpriceswithasmallnumberofquantifiablevariables,suchaswagesoffarmworkers,rainfall,andconsumerincomes.Thisparsimonyinmodelspecificationpermitsthestudyofwheatpricinginasimplifiedsettinginwhichitispossibletounderstandhowthespecificforcesoperate.Althoughanyresearcherwillrecognizethatmany“outside”forces(presenceofwheatdiseases,changesinthepricesoffertilizersoroftractors,orshiftsinconsumerattitudesabouteatingbread)affectthepriceofwheat,theseotherforcesareheldconstantintheconstructionofthemodel.Itisimportanttorecognizethateconomistsarenotassumingthatotherfactorsdonotaffectwheatprices;rather,suchothervariablesareassumedtobeunchangedduringtheperiodofstudy.Inthisway,theeffectofonlyafewforcescanbestudiedinasimplifiedsetting.Suchceterisparibus(otherthingsequal)assumptionsareusedinalleconomicmodeling.Useoftheceterisparibusassumptiondoesposesomedifficultiesfortheverificationofeconomicmodelsfromreal-worlddata.Inothersciences,suchproblemsmaynotbesoseverebecauseoftheabilitytoconductcontrolledexperiments.Forexample,aphysicistwhowishestotestamodeloftheforceofgravityprobablywouldnotdosobydroppingobjectsfromtheEmpireStateBuilding.Experimentsconductedinthatwaywouldbesubjecttotoomanyextraneousforces(windcurrents,particlesintheair,variationsintemperature,andsoforth)topermitaprecisetestofthetheory.Rather,thephysicistwouldconductexperimentsinalaboratory,usingapartialvacuuminwhichmostotherforcescouldbecontrolledorelim-inated.Inthisway,thetheorycouldbeverifiedinasimplesetting,withoutconsideringalltheotherforcesthataffectfallingbodiesintherealworld.2Foranintermediate-leveltextcontaininganextensivesetofreal-worldapplications,seeW.NicholsonandC.Snyder,IntermediateMicroeconomicsandItsApplication,10thed.(Mason,OH:Thomson/Southwestern,2007).Chapter1EconomicModels5
Withafewnotableexceptions,economistshavenotbeenabletoconductcontrolledexperimentstotesttheirmodels.Instead,economistshavebeenforcedtorelyonvariousstatisticalmethodstocontrolforotherforceswhentestingtheirtheories.Althoughthesestatisticalmethodsareasvalidinprincipleasthecontrolledexperimentmethodsusedbyotherscientists,inpracticetheyraiseanumberofthornyissues.Forthatreason,thelimitationsandprecisemeaningoftheceterisparibusassumptionineconomicsaresubjecttogreatercon-troversythaninthelaboratorysciences.OptimizationassumptionsManyeconomicmodelsstartfromtheassumptionthattheeconomicactorsbeingstudiedarerationallypursuingsomegoal.Webrieflydiscussedsuchanassumptionwheninvestigatingthenotionoffirmsmaximizingprofits.Example1.1showshowthatmodelcanbeusedtomaketestablepredictions.Otherexampleswewillencounterinthisbookincludeconsumersmaxi-mizingtheirownwell-being(utility),firmsminimizingcosts,andgovernmentregulatorsattemptingtomaximizepublicwelfare.Although,aswewillshow,alloftheseassumptionsareunrealistic,allhavewonwidespreadacceptanceasgoodstartingplacesfordevelopingeconomicmodels.Thereseemtobetworeasonsforthisacceptance.First,theoptimizationassumptionsareveryusefulforgeneratingprecise,solvablemodels,primarilybecausesuchmodelscandrawonavarietyofmathematicaltechniquessuitableforoptimizationproblems.Manyofthesetechniques,togetherwiththelogicbehindthem,arereviewedinChapter2.Asecondreasonforthepopularityofoptimizationmodelsconcernstheirapparentempiricalvalidity.AssomeofourExtensionsshow,suchmodelsseemtobefairlygoodatexplainingreality.Inall,then,opti-mizationmodelshavecometooccupyaprominentpositioninmoderneconomictheory.EXAMPLE1.1ProfitMaximizationTheprofit-maximizationhypothesisprovidesagoodillustrationofhowoptimizationas-sumptionscanbeusedtogenerateempiricallytestablepropositionsabouteconomicbehavior.Supposethatafirmcansellalltheoutputthatitwishesatapriceofpperunitandthatthetotalcostsofproduction,C,dependontheamountproduced,q.Then,profitsaregivenbyprofits¼π¼pqCðqÞ:(1:1)Maximizationofprofitsconsistsoffindingthatvalueofqwhichmaximizestheprofitex-pressioninEquation1.1.Thisisasimpleproblemincalculus.DifferentiationofEquation1.1andsettingthatderivativeequalto0givethefollowingfirst-orderconditionforamaximum:dπdq¼pC0ðqÞ¼0orp¼C0ðqÞ:(1:2)Inwords,theprofit-maximizingoutputlevel(q)isfoundbyselectingthatoutputlevelforwhichpriceisequaltomarginalcost,C0ðqÞ.Thisresultshouldbefamiliartoyoufromyourintroductoryeconomicscourse.Noticethatinthisderivationthepriceforthefirm’soutputistreatedasaconstantbecausethefirmisapricetaker.Equation1.2isonlythefirst-orderconditionforamaximum.Takingaccountofthesecond-orderconditioncanhelpustoderiveatestableimplicationofthismodel.Thesecond-orderconditionforamaximumisthatatqitmustbethecasethatd2πdq2¼C00ðqÞ<0orC00ðqÞ>0:(1:3)6Part1Introduction
Thatis,marginalcostmustbeincreasingatqforthistobeatruepointofmaximumprofits.Ourmodelcannowbeusedto“predict”howafirmwillreacttoachangeinprice.Todoso,wedifferentiateEquation1.2withrespecttoprice(p),assumingthatthefirmcontinuestochooseaprofit-maximizinglevelofq:d½pC0ðqÞ¼0dp¼1C00ðqÞdqdp¼0:(1:4)Rearrangingtermsabitgivesdqdp¼1C00ðqÞ>0:(1:5)Herethefinalinequalityagainreflectsthefactthatmarginalcostmustbeincreasingifqistobeatruemaximum.Thisthenisoneofthetestablepropositionsoftheprofit-maximizationhypothesis—ifotherthingsdonotchange,aprice-takingfirmshouldrespondtoanincreaseinpricebyincreasingoutput.Ontheotherhand,iffirmsrespondtoincreasesinpricebyreducingoutput,theremustbesomethingwrongwithourmodel.Althoughthisisaverysimplemodel,itreflectsthewaywewillproceedthroughoutmuchofthisbook.Specifically,thefactthattheprimaryimplicationofthemodelisderivedbycalculus,andconsistsofshowingwhatsignaderivativeshouldhave,isthekindofresultwewillseemanytimes.QUERY:Ingeneralterms,howwouldtheimplicationsofthismodelbechangedifthepriceafirmobtainsforitsoutputwereafunctionofhowmuchitsold?Thatis,howwouldthemodelworkiftheprice-takingassumptionwereabandoned?Positive-normativedistinctionAfinalfeatureofmosteconomicmodelsistheattempttodifferentiatecarefullybetween“positive”and“normative”questions.Sofarwehavebeenconcernedprimarilywithpositiveeconomictheories.Suchtheoriestaketherealworldasanobjecttobestudied,attemptingtoexplainthoseeconomicphenomenathatareobserved.Positiveeconomicsseekstodeterminehowresourcesareinfactallocatedinaneconomy.Asomewhatdifferentuseofeconomictheoryisnormativeanalysis,takingadefinitestanceaboutwhatshouldbedone.Undertheheadingofnormativeanalysis,economistshaveagreatdealtosayabouthowresourcesshouldbeallocated.Forexample,aneconomistengagedinpositiveanalysismightinvestigatehowpricesaredeterminedintheU.S.health-careeconomy.Theeconomistalsomightwanttomeasurethecostsandbenefitsofdevotingevenmoreresourcestohealthcare.Butwhenheorshespecificallyadvocatesthatmoreresourcesshouldbeallocatedtohealthcare,theanalysisbecomesnormative.Someeconomistsbelievethattheonlypropereconomicanalysisispositiveanalysis.Drawingananalogywiththephysicalsciences,theyarguethat“scientific”economicsshouldconcernitselfonlywiththedescription(andpossiblyprediction)ofreal-worldeconomicevents.Totakemoralpositionsandtopleadforspecialinterestsareconsideredtobeoutsidethecompetenceofaneconomistactingassuch.Othereconomists,however,believestrictapplicationofthepositive-normativedistinctiontoeconomicmattersisinappropriate.Theybelievethatthestudyofeconomicsnecessarilyinvolvestheresearchers’ownviewsaboutethics,morality,andfairness.Accordingtotheseeconomists,searchingforscientific“objectivity”insuchcircumstancesishopeless.Despitesomeambiguity,thisbookadoptsamainlypositivisttone,leavingnormativeconcernsforyoutodecideforyourself.Chapter1EconomicModels7
DEVELOPMENTOFTHEECONOMICTHEORYOFVALUEBecauseeconomicactivityhasbeenacentralfeatureofallsocieties,itissurprisingthattheseactivitieswerenotstudiedinanydetailuntilrecently.Forthemostpart,economicphenomenaweretreatedasabasicaspectofhumanbehaviorthatwasnotsufficientlyinterestingtodeservespecificattention.Itis,ofcourse,truethatindividualshavealwaysstudiedeconomicactivitieswithaviewtowardmakingsomekindofpersonalgain.Romantraderswerenotabovemakingprofitsontheirtransactions.Butinvestigationsintothebasicnatureoftheseactivitiesdidnotbegininanydepthuntiltheeighteenthcentury.3Becausethisbookisabouteconomictheoryasitstandstoday,ratherthanthehistoryofeconomicthought,ourdiscussionoftheevolutionofeconomictheorywillbebrief.Onlyoneareaofeconomicstudywillbeexaminedinitshistoricalsetting:thetheoryofvalue.EarlyeconomicthoughtsonvalueThetheoryofvalue,notsurprisingly,concernsthedeterminantsofthe“value”ofacommodity.Thissubjectisatthecenterofmodernmicroeconomictheoryandiscloselyintertwinedwiththefundamentaleconomicproblemofallocatingscarceresourcestoalternativeuses.Thelogicalplacetostartiswithadefinitionoftheword“value.”Unfortunately,themeaningofthistermhasnotbeenconsistentthroughoutthedevelopmentofthesubject.Todayweregardvalueasbeingsynonymouswiththepriceofacommodity.4Earlierphilosopher-economists,however,madeadistinctionbetweenthemarketpriceofacommodityanditsvalue.Theterm“value”wasthenthoughtofasbeing,insomesense,synonymouswith“importance,”“essentiality,”or(attimes)“godliness.”Because“price”and“value”wereseparateconcepts,theycoulddiffer,andmostearlyeconomicdiscussionscenteredonthesedivergences.Forexample,St.ThomasAquinasbelievedvaluetobedivinelydetermined.Sincepricesweresetbyhumans,itwaspossibleforthepriceofacommoditytodifferfromitsvalue.Apersonaccusedofchargingapriceinexcessofagood’svaluewasguiltyofchargingan“unjust”price.Forexample,St.Thomasbelievedthe“just”rateofinteresttobezero.Anylenderwhodemandedapaymentfortheuseofmoneywascharginganunjustpriceandcouldbe—andsometimeswas—prosecutedbychurchofficials.ThefoundingofmoderneconomicsDuringthelatterpartoftheeighteenthcentury,philosophersbegantotakeamorescientificapproachtoeconomicquestions.The1776publicationofTheWealthofNationsbyAdamSmith(1723–1790)isgenerallyconsideredthebeginningofmoderneconomics.Inhisvast,all-encompassingwork,Smithlaidthefoundationforthinkingaboutmarketforcesinanorderedandsystematicway.Still,Smithandhisimmediatesuccessors,suchasDavidRicardo(1772–1823),continuedtodistinguishbetweenvalueandprice.ToSmith,forexample,thevalueofacommoditymeantits“valueinuse,”whereasthepricerepresentedits“valueinexchange.”Thedistinctionbetweenthesetwoconceptswasillustratedbythefamouswater-diamondparadox.Water,whichobviouslyhasgreatvalueinuse,haslittlevalueinexchange(ithasalowprice);diamondsareoflittlepracticalusebuthaveagreatvalueinexchange.Theparadoxwithwhichearlyeconomistsstruggledderivesfromtheobservationthatsomeveryusefulitemshavelowpriceswhereascertainnonessentialitemshavehighprices.3Foradetailedtreatmentofearlyeconomicthought,seetheclassicworkbyJ.A.Schumpeter,HistoryofEconomicAnalysis(NewYork:OxfordUniversityPress,1954),pt.II,chaps.1–3.4Thisisnotcompletelytruewhen“externalities”areinvolvedandadistinctionmustbemadebetweenprivateandsocialvalue(seeChapter19).8Part1Introduction
LabortheoryofexchangevalueNeitherSmithnorRicardoeversatisfactorilyresolvedthewater-diamondparadox.Thecon-ceptofvalueinusewasleftforphilosopherstodebate,whileeconomiststurnedtheirattentiontoexplainingthedeterminantsofvalueinexchange(thatis,toexplainingrelativeprices).Oneobviouspossibleexplanationisthatexchangevaluesofgoodsaredeterminedbywhatitcoststoproducethem.Costsofproductionareprimarilyinfluencedbylaborcosts—atleastthiswassointhetimeofSmithandRicardo—andthereforeitwasashortsteptoembracealabortheoryofvalue.Forexample,toparaphraseanexamplefromSmith,ifcatchingadeertakestwicethenumberoflaborhoursascatchingabeaver,thenonedeershouldexchangefortwobeavers.Inotherwords,thepriceofadeershouldbetwicethatofabeaver.Similarly,diamondsarerelativelycostlybecausetheirproductionrequiressubstantiallaborinput.Tostudentswithevenapassingknowledgeofwhatwenowcallthelawofsupplyanddemand,Smith’sandRicardo’sexplanationmustseemincomplete.Didn’ttheyrecognizetheeffectsofdemandonprice?Theanswertothisquestionisbothyesandno.Theydidobserveperiodsofrapidlyrisingandfallingrelativepricesandattributedsuchchangestodemandshifts.However,theyregardedthesechangesasabnormalitiesthatproducedonlyatemporarydivergenceofmarketpricefromlaborvalue.Becausetheyhadnotreallydevelopedatheoryofvalueinuse,theywereunwillingtoassigndemandanymorethanatransientroleindeter-miningrelativeprices.Rather,long-runexchangevalueswereassumedtobedeterminedsolelybylaborcostsofproduction.ThemarginalistrevolutionBetween1850and1880,economistsbecameincreasinglyawarethattoconstructanadequatealternativetothelabortheoryofvalue,theyhadtocometodeviseatheoryofvalueinuse.Duringthe1870s,severaleconomistsdiscoveredthatitisnotthetotalusefulnessofacommoditythathelpstodetermineitsexchangevalue,butrathertheusefulnessofthelastunitconsumed.Forexample,wateriscertainlyveryuseful—itisnecessaryforalllife.But,becausewaterisrelativelyplentiful,consumingonemorepint(ceterisparibus)hasarelativelylowvaluetopeople.These“marginalists”redefinedtheconceptofvalueinusefromanideaofoverallusefulnesstooneofmarginal,orincremental,usefulness—theusefulnessofanadditionalunitofacommodity.TheconceptofthedemandforanincrementalunitofoutputwasnowcontrastedtoSmith’sandRicardo’sanalysisofproductioncoststoderiveacomprehensivepictureofpricedetermination.5Marshalliansupply-demandsynthesisThecleareststatementofthesemarginalprincipleswaspresentedbytheEnglisheconomistAlfredMarshall(1842–1924)inhisPrinciplesofEconomics,publishedin1890.Marshallshowedthatdemandandsupplysimultaneouslyoperatetodetermineprice.AsMarshallnoted,justasyoucannottellwhichbladeofascissorsdoesthecutting,sotooyoucannotsaythateitherdemandorsupplyalonedeterminesprice.ThatanalysisisillustratedbythefamousMarshalliancrossshowninFigure1.1.Inthediagramthequantityofagoodpurchasedperperiodisshownonthehorizontalaxisanditspriceappearsontheverticalaxis.ThecurveDDrepresentsthequantityofthegooddemandedperperiodateachpossibleprice.Thecurveisnegativelyslopedtoreflectthemarginalistprinciplethatasquantityincreases,peopleare5Ricardohadearlierprovidedanimportantfirststepinmarginalanalysisinhisdiscussionofrent.Ricardotheorizedthatastheproductionofcornincreased,landofinferiorqualitywouldbeusedandthiswouldcausethepriceofcorntorise.InhisargumentRicardoimplicitlyrecognizedthatitisthemarginalcost—thecostofproducinganadditionalunit—thatisrelevanttopricing.NoticethatRicardoimplicitlyheldotherinputsconstantwhendiscussingdiminishinglandproductivity;thatis,heemployedoneversionoftheceterisparibusassumption.Chapter1EconomicModels9
willingtopaylessforthelastunitpurchased.Itisthevalueofthislastunitthatsetsthepriceforallunitspurchased.ThecurveSSshowshow(marginal)productioncostsriseasmoreoutputisproduced.Thisreflectstheincreasingcostofproducingonemoreunitastotaloutputexpands.Inotherwords,theupwardslopeoftheSScurvereflectsincreasingmarginalcosts,justasthedownwardslopeoftheDDcurvereflectsdecreasingmarginalvalue.Thetwocurvesintersectatp,q.Thisisanequilibriumpoint—bothbuyersandsellersarecontentwiththequantitybeingtradedandthepriceatwhichitistraded.Ifoneofthecurvesshouldshift,theequilibriumpointwouldshifttoanewlocation.Thuspriceandquantityaresimultaneouslydeterminedbythejointoperationofsupplyanddemand.ParadoxresolvedMarshall’smodelresolvesthewater-diamondparadox.Pricesreflectboththemarginaleval-uationthatdemandersplaceongoodsandthemarginalcostsofproducingthegoods.Viewedinthisway,thereisnoparadox.Waterislowinpricebecauseithasbothalowmarginalvalueandalowmarginalcostofproduction.Ontheotherhand,diamondsarehighinpricebecausetheyhavebothahighmarginalvalue(becausepeoplearewillingtopayquiteabitforonemore)andahighmarginalcostofproduction.Thisbasicmodelofsupplyanddemandliesbehindmuchoftheanalysispresentedinthisbook.GeneralequilibriummodelsAlthoughtheMarshallianmodelisanextremelyusefulandversatiletool,itisapartialequilibriummodel,lookingatonlyonemarketatatime.Forsomequestions,thisnarrowingofperspectivegivesvaluableinsightsandanalyticalsimplicity.Forother,broaderquestions,suchanarrowviewpointmaypreventthediscoveryofimportantrelationshipsamongmarkets.Toanswermoregeneralquestionswemusthaveamodelofthewholeeconomythatsuitablymirrorstheconnectionsamongvariousmarketsandeconomicagents.TheFrencheconomistLeonWalras(1831–1910),buildingonalongContinentaltraditioninsuchanalysis,createdthebasisformoderninvestigationsintothosebroadquestions.HismethodofrepresentingtheFIGURE1.1TheMarshallianSupply-DemandCrossMarshalltheorizedthatdemandandsupplyinteracttodeterminetheequilibriumprice(p)andthequantity(q)thatwillbetradedinthemarket.Heconcludedthatitisnotpossibletosaythateitherdemandorsupplyalonedeterminespriceorthereforethateithercostsorusefulnesstobuyersalonedeterminesexchangevalue.Quantity per periodPriceSSDDq*p*10Part1Introduction
economybyalargenumberofsimultaneousequationsformsthebasisforunderstandingtheinterrelationshipsimplicitingeneralequilibriumanalysis.Walrasrecognizedthatonecannottalkaboutasinglemarketinisolation;whatisneededisamodelthatpermitstheeffectsofachangeinonemarkettobefollowedthroughothermarkets.EXAMPLE1.2Supply-DemandEquilibriumAlthoughgraphicalpresentationsareadequateforsomepurposes,economistsoftenusealgebraicrepresentationsoftheirmodelstobothclarifytheirargumentsandmakethemmoreprecise.Asanelementaryexample,supposewewishedtostudythemarketforpeanutsand,onthebasisofstatisticalanalysisofhistoricaldata,concludedthatthequantityofpeanutsdemandedeachweek(q,measuredinbushels)dependedonthepriceofpeanuts(p,measuredindollarsperbushel)accordingtotheequationquantitydemanded¼qD¼1,000100p:(1:6)BecausethisequationforqDcontainsonlythesingleindependentvariablep,weareimplicitlyholdingconstantallotherfactorsthatmightaffectthedemandforpeanuts.Equation1.6indicatesthat,ifotherthingsdonotchange,atapriceof$5perbushelpeoplewilldemand500bushelsofpeanuts,whereasatapriceof$4perbusheltheywilldemand600bushels.ThenegativecoefficientforpinEquation1.6reflectsthemarginalistprinciplethatalowerpricewillcausepeopletobuymorepeanuts.Tocompletethissimplemodelofpricing,supposethatthequantityofpeanutssuppliedalsodependsonprice:quantitysupplied¼qS¼125þ125p:(1:7)Herethepositivecoefficientofpricealsoreflectsthemarginalprinciplethatahigherpricewillcallforthincreasedsupply—primarilybecause(aswesawinExample1.1)itpermitsfirmstoincurhighermarginalcostsofproductionwithoutincurringlossesontheadditionalunitsproduced.Equilibriumpricedetermination.Equation1.6and1.7thereforereflectourmodelofpricedeterminationinthemarketforpeanuts.Anequilibriumpricecanbefoundbysettingquantitydemandedequaltoquantitysupplied:qD¼qS(1:8)or1,000100p¼125þ125p(1:9)or225p¼1,125,(1:10)sop¼5:(1:11)Atapriceof$5perbushel,thismarketisinequilibrium:atthispricepeoplewanttopurchase500bushels,andthatisexactlywhatpeanutproducersarewillingtosupply.ThisequilibriumispicturedgraphicallyastheintersectionofDandSinFigure1.2.Amoregeneralmodel.Inordertoillustratehowthissupply-demandmodelmightbeused,let’sadoptamoregeneralnotation.Supposenowthatthedemandandsupplyfunctionsaregivenby(continued)Chapter1EconomicModels11
EXAMPLE1.2CONTINUEDFIGURE1.2ChangingSupply-DemandEquilibriaTheinitialsupply-demandequilibriumisillustratedbytheintersectionofDandS(p¼5,q¼500).WhendemandshiftstoqD0¼1,450100p(denotedasD0),theequilibriumshiftstop¼7,q¼750.0Quantity perperiod (bushels)Price($)SSD′D′DD14.5107550075010001450qD¼aþbpandqS¼cþdp(1:12)whereaandcareconstantsthatcanbeusedtoshiftthedemandandsupplycurves,respectively,andb(<0)andd(>0)representdemanders’andsuppliers’reactionstoprice.EquilibriuminthismarketrequiresqD¼qSoraþbp¼cþdp:(1:13)So,equilibriumpriceisgivenby6p¼acdb:(1:14)6Equation1.14issometimescalledthe“reducedform”forthesupply-demandstructuralmodelofEquations1.12and1.13.Itshowsthattheequilibriumvaluefortheendogenousvariablepultimatelydependsonlyontheexogenousfactorsinthemodel(aandc)andonthebehavioralparametersbandd.Asimilarequationcanbecalculatedforequilibriumquantity.12Part1Introduction
Noticethat,inourpriorexample,a¼1,000,b¼100,c¼125,andd¼125,sop¼1,000þ125125þ100¼1,125225¼5:(1:15)Withthismoregeneralformulation,however,wecanposequestionsabouthowtheequi-libriumpricemightchangeifeitherthedemandorsupplycurveshifted.Forexample,differentiationofEquation1.14showsthatdpda¼1db>0,dpdc¼1db<0:(1:16)Thatis,anincreaseindemand(anincreaseina)increasesequilibriumpricewhereasanin-creaseinsupply(anincreaseinc)reducesprice.Thisisexactlywhatagraphicalanalysisofsupplyanddemandcurveswouldshow.Forexample,Figure1.2showsthatwhenthecon-stantterm,a,inthedemandequationincreasesto1450,equilibriumpriceincreasestop¼7½¼ð1,450þ125Þ=225.QUERY:HowmightyouuseEquation1.16to“predict”howeachunitincreaseintheconstantaaffectsp?Doesthisequationcorrectlypredicttheincreaseinpwhentheconstantaincreasesfrom1,000to1,450?Forexample,supposethatthedemandforpeanutsweretoincrease.Thiswouldcausethepriceofpeanutstoincrease.Marshalliananalysiswouldseektounderstandthesizeofthisincreasebylookingatconditionsofsupplyanddemandinthepeanutmarket.Generalequilibriumanalysiswouldlooknotonlyatthatmarketbutalsoatrepercussionsinothermarkets.Ariseinthepriceofpeanutswouldincreasecostsforpeanutbuttermakers,whichwould,inturn,affectthesupplycurveforpeanutbutter.Similarly,therisingpriceofpeanutsmightmeanhigherlandpricesforpeanutfarmers,whichwouldaffectthedemandcurvesforallproductsthattheybuy.Thedemandcurvesforautomobiles,furniture,andtripstoEuropewouldallshiftout,andthatmightcreateadditionalincomesfortheprovidersofthoseproducts.Consequently,theeffectsoftheinitialincreaseindemandforpeanutseventuallywouldspreadthroughouttheeconomy.Generalequilibriumanalysisattemptstodevelopmodelsthatpermitustoexaminesucheffectsinasimplifiedsetting.SeveralmodelsofthistypearedescribedinChapter13.ProductionpossibilityfrontierHerewebrieflyintroducesomegeneralequilibriumideasbyusinganothergraphyoushouldrememberfromintroductoryeconomics—theproductionpossibilityfrontier.Thisgraphshowsthevariousamountsoftwogoodsthataneconomycanproduceusingitsavailableresourcesduringsomeperiod(say,oneweek).Becausetheproductionpossibilityfrontiershowstwogoods,ratherthanthesinglegoodinMarshall’smodel,itisusedasabasicbuildingblockforgeneralequilibriummodels.Figure1.3showstheproductionpossibilityfrontierfortwogoods,foodandclothing.Thegraphillustratesthesupplyofthesegoodsbyshowingthecombinationsthatcanbeproducedwiththiseconomy’sresources.Forexample,10poundsoffoodand3unitsofclothingcouldbeproduced,or4poundsoffoodand12unitsofclothing.Manyothercombinationsoffoodandclothingcouldalsobeproduced.Theproductionpossibilityfrontiershowsallofthem.Combinationsoffoodandclothingoutsidethefrontiercannotbeproducedbecausenotenoughresourcesareavailable.TheproductionpossibilityfrontierChapter1EconomicModels13
remindsusofthebasiceconomicfactthatresourcesarescarce—therearenotenoughresourcesavailabletoproduceallwemightwantofeverygood.Thisscarcitymeansthatwemustchoosehowmuchofeachgoodtoproduce.Figure1.3makesclearthateachchoicehasitscosts.Forexample,ifthiseconomyproduces10poundsoffoodand3unitsofclothingatpointA,producing1moreunitofclothingwould“cost”12poundoffood—increasingtheoutputofclothingby1unitmeanstheproductionoffoodwouldhavetodecreaseby12pound.So,theopportunitycostof1unitofclothingatpointAis12poundoffood.Ontheotherhand,iftheeconomyinitiallyproduces4poundsoffoodand12unitsofclothingatpointB,itwouldcost2poundsoffoodtoproduce1moreunitofclothing.Theopportunitycostof1moreunitofclothingatpointBhasincreasedto2poundsoffood.BecausemoreunitsofclothingareproducedatpointBthanatpointA,bothRicardo’sandMarshall’sideasofincreasingincrementalcostssuggestthattheopportunitycostofanadditionalunitofclothingwillbehigheratpointBthanatpointA.ThiseffectisshownbyFigure1.3.TheproductionpossibilityfrontierprovidestwogeneralequilibriuminsightsthatarenotclearinMarshall’ssupplyanddemandmodelofasinglemarket.First,thegraphshowsthatproducingmoreofonegoodmeansproducinglessofanothergoodbecauseresourcesarescarce.Economistsoften(perhapstoooften!)usetheexpression“thereisnosuchthingasafreelunch”toexplainthateveryeconomicactionhasopportunitycosts.Second,theproductionpossibilityfrontiershowsthatopportunitycostsdependonhowmuchofeachgoodisproduced.Thefrontierislikeasupplycurvefortwogoods:itshowstheopportunitycostofproducingmoreofonegoodasthedecreaseintheamountofthesecondgood.Theproductionpossibilityfrontieristhereforeaparticularlyusefultoolforstudyingseveralmarketsatthesametime.FIGURE1.3ProductionPossibilityFrontierTheproductionpossibilityfrontiershowsthedifferentcombinationsoftwogoodsthatcanbeproducedfromacertainamountofscarceresources.Italsoshowstheopportunitycostofproducingmoreofonegoodastheamountoftheothergoodthatcannotthenbeproduced.TheopportunitycostattwodifferentlevelsofclothingproductioncanbeseenbycomparingpointsAandB.Quantityof foodper weekBA0249.510341213Quantityof clothingper weekOpportunity cost ofclothing = 2 poundsof foodOpportunity cost ofclothing = pound of food1214Part1Introduction
EXAMPLE1.3TheProductionPossibilityFrontierandEconomicInefficiencyGeneralequilibriummodelsaregoodtoolsforevaluatingtheefficiencyofvariouseconomicarrangements.AswewillseeinChapter13,suchmodelshavebeenusedtoassessawidevarietyofpoliciessuchastradeagreements,taxstructures,andenvironmentalregulation.Inthissimpleexample,weexploretheideaofefficiencyinitsmostelementaryform.Supposethataneconomyproducestwogoods,xandy,usinglaborastheonlyinput.Theproductionfunctionforgoodxisx¼l0:5x(wherelxisthequantityoflaborusedinxproduction)andtheproductionfunctionforgoodyisy¼2l0:5y.Totallaboravailableisconstrainedbylxþly200.Constructionoftheproductionpossibilityfrontierinthiseconomyisextremelysimple:lxþly¼x2þ0:25y2200(1:17)iftheeconomyistobeproducingasmuchaspossible(which,afterall,iswhyit’scalleda“frontier”).Equation1.17showsthatthefrontierherehastheshapeofaquarterellipse—itsconcavityderivesfromthediminishingreturnsexhibitedbyeachproductionfunction.Opportunitycost.Assumingthiseconomyisonthefrontier,theopportunitycostofgoodyintermsofgoodxcanbederivedbysolvingforyasy2¼8004x2ory¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi8004x2p¼½8004x20:5(1:18)andthendifferentiatingthisexpression:dydx¼0:5½8004x20:5ð8xÞ¼4xy:(1:19)Suppose,forexample,laborisequallyallocatedbetweenthetwogoods.Thenx¼10,y¼20,anddy=dx¼4ð10Þ=20¼2.Withthisallocationoflabor,eachunitincreaseinxoutputwouldrequireareductioninyof2units.Thiscanbeverifiedbyconsideringaslightlydifferentallocation,lx¼101andly¼99.Nowproductionisx¼10:05andy¼19:9.MovingtothisalternativeallocationwouldhaveDyDx¼ð19:920Þð10:0510Þ¼0:10:05¼2,whichispreciselywhatwasderivedfromthecalculusapproach.Concavity.Equation1.19clearlyillustratestheconcavityoftheproductionpossibilityfrontier.Theslopeofthefrontierbecomessteeper(morenegative)asxoutputincreasesandyoutputfalls.Forexample,iflaborisallocatedsothatlx¼144andly¼56,thenoutputsarex¼12andy15andsody=dx¼4ð12Þ=15¼3:2.Withexpandedxproduction,theopportunitycostofonemoreunitofxincreasesfrom2to3.2unitsofy.Inefficiency.Ifaneconomyoperatesinsideitsproductionpossibilityfrontier,itisoperatinginefficiently.Movingoutwardtothefrontiercouldincreasetheoutputofbothgoods.Inthisbookwewillexploremanyreasonsforsuchinefficiency.Theseusuallyderivefromafailureofsomemarkettoperformcorrectly.Forthepurposesofthisillustration,let’sassumethatthelabormarketinthiseconomydoesnotworkwellandthat20workersarepermanentlyunemployed.Nowtheproductionpossibilityfrontierbecomesx2þ0:25y2¼180,(1:20)(continued)Chapter1EconomicModels15
EXAMPLE1.3CONTINUEDandtheoutputcombinationswedescribedpreviouslyarenolongerfeasible.Forexample,ifx¼10thenyoutputisnowy17:9.Thelossofabout2.1unitsofyisameasureofthecostofthelabormarketinefficiency.Alternatively,ifthelaborsupplyof180wereallocatedevenlybetweentheproductionofthetwogoodsthenwewouldhavex9:5andy19,andtheinefficiencywouldshowupinbothgoods’production—moreofbothgoodscouldbepro-ducedifthelabormarketinefficiencywereresolved.QUERY:Howwouldtheinefficiencycostoflabormarketimperfectionsbemeasuredsolelyintermsofxproductioninthismodel?Howwoulditbemeasuredsolelyintermsofyproduction?Whatwouldyouneedtoknowinordertoassignasinglenumbertotheefficiencycostoftheimperfectionwhenlaborisequallyallocatedtothetwogoods?WelfareeconomicsInadditiontotheiruseinexaminingpositivequestionsabouthowtheeconomyoperates,thetoolsusedingeneralequilibriumanalysishavealsobeenappliedtothestudyofnormativequestionsaboutthewelfarepropertiesofvariouseconomicarrangements.Althoughsuchquestionswereamajorfocusofthegreateighteenth-andnineteenth-centuryeconomists(Smith,Ricardo,Marx,Marshall,andsoforth),perhapsthemostsignificantadvancesintheirstudyweremadebytheBritisheconomistFrancisY.Edgeworth(1848–1926)andtheItalianeconomistVilfredoPareto(1848–1923)intheearlyyearsofthetwentiethcentury.Theseeconomistshelpedtoprovideaprecisedefinitionfortheconceptof“economicefficiency”andtodemonstratetheconditionsunderwhichmarketswillbeabletoachievethatgoal.Byclarifyingtherelationshipbetweentheallocationpricingofresources,theyprovidedsomesupportfortheidea,firstenunciatedbyAdamSmith,thatproperlyfunctioningmarketsprovidean“invisiblehand”thathelpsallocateresourcesefficiently.Latersectionsofthisbookfocusonsomeofthesewelfareissues.MODERNDEVELOPMENTSResearchactivityineconomicsexpandedrapidlyintheyearsfollowingWorldWarII.Amajorpurposeofthisbookistosummarizemuchofthisresearch.Byillustratinghoweconomistshavetriedtodevelopmodelstoexplainincreasinglycomplexaspectsofeconomicbehavior,thisbookseekstohelpyourecognizesomeoftheremainingunansweredquestions.ThemathematicalfoundationsofeconomicmodelsAmajorpostwardevelopmentinmicroeconomictheorywastheclarificationandformalizationofthebasicassumptionsthataremadeaboutindividualsandfirms.Thefirstlandmarkinthisdevelopmentwasthe1947publicationofPaulSamuelson’sFoundationsofEconomicAnalysis,inwhichtheauthor(thefirstAmericanNobelPrizewinnerineconomics)laidoutanumberofmodelsofoptimizingbehavior.7Samuelsondemonstratedtheimportanceofbasingbehav-ioralmodelsonwell-specifiedmathematicalpostulatessothatvariousoptimizationtechniquesfrommathematicscouldbeapplied.Thepowerofhisapproachmadeitinescapablyclearthatmathematicshadbecomeanintegralpartofmoderneconomics.InChapter2ofthisbookwereviewsomeofthemathematicalconceptsmostoftenusedinmicroeconomics.7PaulA.Samuelson,FoundationsofEconomicAnalysis(Cambridge,MA:HarvardUniversityPress,1947).16Part1Introduction
NewtoolsforstudyingmarketsAsecondfeaturethathasbeenincorporatedintothisbookisthepresentationofanumberofnewtoolsforexplainingmarketequilibria.Theseincludetechniquesfordescribingpricinginsinglemarkets,suchasincreasinglysophisticatedmodelsofmonopolisticpricingormodelsofthestrategicrelationshipsamongfirmsthatusegametheory.Theyalsoincludegeneralequilibriumtoolsforsimultaneouslyexploringrelationshipsamongmanymarkets.Asweshallsee,allofthesenewtechniqueshelptoprovideamorecompleteandrealisticpictureofhowmarketsoperate.TheeconomicsofuncertaintyandinformationAfinalmajortheoreticaladvanceduringthepostwarperiodwastheincorporationofuncertaintyandimperfectinformationintoeconomicmodels.Someofthebasicassumptionsusedtostudybehaviorinuncertainsituationswereoriginallydevelopedinthe1940sinconnectionwiththetheoryofgames.Laterdevelopmentsshowedhowtheseideascouldbeusedtoexplainwhyindividualstendtobeadversetoriskandhowtheymightgatherinformationinordertoreducetheuncertaintiestheyface.Inthisbook,problemsofuncertaintyandinformationentertheanalysisonmanyoccasions.ComputersandempiricalanalysisOnefinalaspectofthepostwardevelopmentofmicroeconomicsshouldbementioned—theincreasinguseofcomputerstoanalyzeeconomicdataandbuildeconomicmodels.Ascomputershavebecomeabletohandlelargeramountsofinformationandcarryoutcomplexmathematicalmanipulations,economists’abilitytotesttheirtheorieshasdramaticallyimproved.Whereaspreviousgenerationshadtobecontentwithrudimentarytabularorgraphicalanalysesofreal-worlddata,today’seconomistshaveavailableawidevarietyofsophisticatedtechniquestogetherwithextensivemicroeconomicdatawithwhichtotesttheirmodels.Toexaminethesetech-niquesandsomeoftheirlimitationswouldbebeyondthescopeandpurposeofthisbook.But,Extensionsattheendofmostchaptersareintendedtohelpyoustartreadingaboutsomeoftheseapplications.SUMMARYThischapterprovidedbackgroundonhoweconomistsap-proachthestudyoftheallocationofresources.Muchofthematerialdiscussedhereshouldbefamiliartoyoufromintro-ductoryeconomics.Inmanyrespects,thestudyofeconomicsrepresentsacquiringincreasinglysophisticatedtoolsforad-dressingthesamebasicproblems.Thepurposeofthisbook(and,indeed,ofmostupper-levelbooksoneconomics)istoprovideyouwithmoreofthesetools.Asastartingplace,thischapterremindedyouofthefollowingpoints:•Economicsisthestudyofhowscarceresourcesareal-locatedamongalternativeuses.Economistsseektodevelopsimplemodelstohelpunderstandthatprocess.Manyofthesemodelshaveamathematicalbasisbe-causetheuseofmathematicsoffersapreciseshorthandforstatingthemodelsandexploringtheirconsequences.•Themostcommonlyusedeconomicmodelisthesupply-demandmodelfirstthoroughlydevelopedbyAlfredMarshallinthelatterpartofthenineteenthcentury.Thismodelshowshowobservedpricescanbetakentorepresentanequilibriumbalancingoftheproductioncostsincurredbyfirmsandthewillingnessofdemanderstopayforthosecosts.•Marshall’smodelofequilibriumisonly“partial”—thatis,itlooksonlyatonemarketatatime.Tolookatmanymarketstogetherrequiresanexpandedsetofgeneralequilibriumtools.•Testingthevalidityofaneconomicmodelisperhapsthemostdifficulttaskeconomistsface.Occasionally,amodel’svaliditycanbeappraisedbyaskingwhetheritisbasedon“reasonable”assumptions.Moreoften,however,modelsarejudgedbyhowwelltheycanexplaineconomiceventsintherealworld.Chapter1EconomicModels17
SUGGESTIONSFORFURTHERREADINGOnMethodologyBlaug,Mark,andJohnPencavel.TheMethodologyofEconom-ics:OrHowEconomistsExplain,2nded.Cambridge:Cam-bridgeUniversityPress,1992.Arevisedandexpandedversionofaclassicstudyoneconomicmeth-odology.Tiesthediscussiontomoregeneralissuesinthephilosophyofscience.Boland,LawrenceE.“ACritiqueofFriedman’sCritics.”JournalofEconomicLiterature(June1979):503–22.Goodsummaryofcriticismsofpositiveapproachestoeconomicsandoftheroleofempiricalverificationofassumptions.Friedman,Milton.“TheMethodologyofPositiveEconom-ics.”InEssaysinPositiveEconomics,pp.3–43.Chicago:UniversityofChicagoPress,1953.BasicstatementofFriedman’spositivistviews.Harrod,RoyF.“ScopeandMethodinEconomics.”EconomicJournal48(1938):383–412.Classicstatementofappropriateroleforeconomicmodeling.Hausman,DavidM.,andMichaelS.McPherson.EconomicAnalysis,MoralPhilosophy,andPublicPolicy,2nded.Cambridge:CambridgeUniversityPress,2006.Theauthorsstresstheirbeliefthatconsiderationofissuesinmoralphilosophycanimproveeconomicanalysis.McCloskey,DonaldN.IfYou’reSoSmart:TheNarrativeofEconomicExpertise.Chicago:UniversityofChicagoPress,1990.DiscussionofMcCloskey’sviewthateconomicpersuasiondependsonrhetoricasmuchasonscience.Foraninterchangeonthistopic,seealsothearticlesintheJournalofEconomicLiterature,June1995.Sen,Amartya.OnEthicsandEconomics.Oxford:BlackwellReprints,1989.Theauthorseekstobridgethegapbetweeneconomicsandethicalstudies.Thisisareprintofaclassicstudyonthistopic.PrimarySourcesontheHistoryofEconomicsEdgeworth,F.Y.MathematicalPsychics.London:KeganPaul,1881.Initialinvestigationsofwelfareeconomics,includingrudimentarynotionsofeconomicefficiencyandthecontractcurve.Marshall,A.PrinciplesofEconomics,8thed.London:Mac-millan&Co.,1920.Completesummaryofneoclassicalview.Along-running,populartext.Detailedmathematicalappendix.Marx,K.Capital.NewYork:ModernLibrary,1906.Fulldevelopmentoflabortheoryofvalue.Discussionof“transforma-tionproblem”providesa(perhapsfaulty)startforgeneralequilibriumanalysis.Presentsfundamentalcriticismsofinstitutionofprivateproperty.Ricardo,D.PrinciplesofPoliticalEconomyandTaxation.London:J.M.Dent&Sons,1911.Veryanalytical,tightlywrittenwork.Pioneerindevelopingcarefulanalysisofpolicyquestions,especiallytrade-relatedissues.Discussesfirstbasicnotionsofmarginalism.Smith,A.TheWealthofNations.NewYork:ModernLibrary,1937.Firstgreateconomicsclassic.Verylonganddetailed,butSmithhadthefirstwordonpracticallyeveryeconomicmatter.Thiseditionhashelpfulmarginalnotes.Walras,L.ElementsofPureEconomics.TranslatedbyW.Jaffé.Homewood,IL:RichardD.Irwin,1954.Beginningsofgeneralequilibriumtheory.Ratherdifficultreading.SecondarySourcesontheHistoryofEconomicsBackhouse,RogerE.TheOrdinaryBusinessofLife:TheHistoryofEconomicsfromtheAncientWorldtothe21stCentury.Princeton,NJ:PrincetonUniversityPress,2002.Aniconoclastichistory.Quitegoodontheearliesteconomicideas,butsomeblindspotsonrecentusesofmathematicsandeconometrics.Blaug,Mark.EconomicTheoryinRetrospect,5thed.Cambridge:CambridgeUniversityPress,1997.Verycompletesummarystressinganalyticalissues.Excellent“Readers’Guides”totheclassicsineachchapter.Heilbroner,RobertL.TheWorldlyPhilosophers,7thed.NewYork:Simon&Schuster,1999.Fascinating,easy-to-readbiographiesofleadingeconomists.Chap-tersonUtopianSocialistsandThorsteinVeblenhighlyrecommended.Keynes,JohnM.EssaysinBiography.NewYork:W.W.Norton,1963.Essaysonmanyfamouspersons(LloydGeorge,WinstonChurchill,LeonTrotsky)andonseveraleconomists(Malthus,Marshall,Edgeworth,F.P.Ramsey,andJevons).ShowsthetruegiftofKeynesasawriter.Schumpeter,J.A.HistoryofEconomicAnalysis.NewYork:OxfordUniversityPress,1954.Encyclopedictreatment.Coversallthefamousandmanynot-so-famouseconomists.Alsobrieflysummarizesconcurrentdevelopmentsinotherbranchesofthesocialsciences.18Part1Introduction
CHAPTER2MathematicsforMicroeconomicsMicroeconomicmodelsareconstructedusingawidevarietyofmathematicaltechniques.Inthischapterweprovideabriefsummaryofsomeofthemostimportanttechniquesthatyouwillencounterinthisbook.Amajorportionofthechapterconcernsmathematicalproceduresforfindingtheoptimalvalueofsomefunction.Becausewewillfrequentlyadopttheassumptionthataneconomicactorseekstomaximizeorminimizesomefunction,wewillencountertheseprocedures(mostofwhicharebasedondifferentialcalculus)manytimes.Afterourdetaileddiscussionofthecalculusofoptimization,weturntofourtopicsthatarecoveredmorebriefly.First,welookatafewspecialtypesoffunctionsthatariseineconomicproblems.Knowledgeofpropertiesofthesefunctionscanoftenbeveryhelpfulinsolvingeconomicproblems.Next,weprovideabriefsummaryofintegralcalculus.Althoughintegrationisusedinthisbookfarlessfrequentlythanisdifferentiation,wewillneverthelessencounterseveralsituationswherewewillwanttoemployintegralstomeasureareasthatareimportanttoeconomictheoryortoaddupoutcomesthatoccurovertimeoracrossmanyindividuals.Oneparticularuseofintegrationistoexamineproblemsinwhichtheobjectiveistomaximizeastreamofoutcomesovertime.Ourthirdaddedtopicfocusesontechniquestobeusedforsuchproblemsindynamicoptimization.Finally,Chapter2concludeswithabriefsummaryofmathematicalstatistics,whichwillbeparticularlyusefulinourstudyofeconomicbehaviorinuncertainsituations.MAXIMIZATIONOFAFUNCTIONOFONEVARIABLELet’sstartourstudyofoptimizationwithasimpleexample.Supposethatamanagerofafirmdesirestomaximize1theprofitsreceivedfromsellingaparticulargood.SupposealsothattheprofitsðπÞreceiveddependonlyonthequantityðqÞofthegoodsold.Mathematically,π¼fðqÞ:(2.1)Figure2.1showsapossiblerelationshipbetweenπandq.Clearly,toachievemaximumprofits,themanagershouldproduceoutputq,whichyieldsprofitsπ.IfagraphsuchasthatofFigure2.1wereavailable,thiswouldseemtobeasimplemattertobeaccomplishedwitharuler.Suppose,however,asismorelikely,themanagerdoesnothavesuchanaccuratepictureofthemarket.Heorshemaythentryvaryingqtoseewhereamaximumprofitisobtained.Forexample,bystartingatq1,profitsfromsaleswouldbeπ1.Next,themanagermaytryoutputq2,observingthatprofitshaveincreasedtoπ2.Thecommonsenseideathatprofitshaveincreasedinresponsetoanincreaseinqcanbestatedformallyasπ2π1q2q1>0or∆π∆q>0,(2.2)1Herewewillgenerallyexploremaximizationproblems.Avirtuallyidenticalapproachwouldbetakentostudyminimiza-tionproblemsbecausemaximizationoffðxÞisequivalenttominimizingfðxÞ.19
wherethe∆notationisusedtomean“thechangein”πorq.Aslongas∆π=∆qispositive,profitsareincreasingandthemanagerwillcontinuetoincreaseoutput.Forincreasesinoutputtotherightofq,however,∆π=∆qwillbenegative,andthemanagerwillrealizethatamistakehasbeenmade.DerivativesAsyouprobablyknow,thelimitof∆π=∆qforverysmallchangesinqiscalledthederivativeofthefunction,π¼fðqÞ,andisdenotedbydπ=dqordf=dqorf0ðqÞ.Moreformally,thederivativeofafunctionπ¼fðqÞatthepointq1isdefinedasdπdq¼dfdq¼limh!0fðq1þhÞfðq1Þh:(2.3)Noticethatthevalueofthisratioobviouslydependsonthepointq1thatischosen.ValueofthederivativeatapointAnotationalconventionshouldbementioned:Sometimesonewishestonoteexplicitlythepointatwhichthederivativeistobeevaluated.Forexample,theevaluationofthederivativeatthepointq¼q1couldbedenotedbydπdqq¼q1:(2.4)Atothertimes,oneisinterestedinthevalueofdπ=dqforallpossiblevaluesofqandnoexplicitmentionofaparticularpointofevaluationismade.IntheexampleofFigure2.1,dπdqq¼q1>0,whereasdπdqq¼q3<0:Whatisthevalueofdπ=dqatq?Itwouldseemtobe0,becausethevalueispositiveforvaluesofqlessthanqandnegativeforvaluesofqgreaterthanq.Thederivativeistheslopeofthecurveinquestion;thisslopeispositivetotheleftofqandnegativetotherightofq.Atthepointq,theslopeoffðqÞis0.FIGURE2.1HypotheticalRelationshipbetweenQuantityProducedandProfitsIfamanagerwishestoproducethelevelofoutputthatmaximizesprofits,thenqshouldbeproduced.Noticethatatq,dπ=dq¼0.π=f(q)πQuantityq1q2q*q3π*π2π3π120Part1Introduction
First-orderconditionforamaximumThisresultisquitegeneral.Forafunctionofonevariabletoattainitsmaximumvalueatsomepoint,thederivativeatthatpoint(ifitexists)mustbe0.Hence,ifamanagercouldestimatethefunctionfðqÞfromsomesortofreal-worlddata,itwouldtheoreticallybepossibletofindthepointwheredf=dq¼0.Atthisoptimalpoint(say,q),dfdqq¼q¼0:(2.5)Second-orderconditionsAnunsuspectingmanagercouldbetricked,however,byanaiveapplicationofthisfirst-derivativerulealone.Forexample,supposethattheprofitfunctionlookslikethatshownineitherFigure2.2aor2.2b.IftheprofitfunctionisthatshowninFigure2.2a,themanager,byproducingwheredπ=dq¼0,willchoosepointqa.Thispointinfactyieldsminimum,notmaximum,profitsforthemanager.Similarly,iftheprofitfunctionisthatshowninFigure2.2,themanagerwillchoosepointqb,which,althoughityieldsaprofitgreaterthanthatforanyoutputlowerthanqb,iscertainlyinferiortoanyoutputgreaterthanqb.Thesesituationsillustratethemathematicalfactthatdπ=dq¼0isanecessaryconditionforamaximum,butnotasufficientcondition.Toensurethatthechosenpointisindeedamaximumpoint,asecondconditionmustbeimposed.Intuitively,thisadditionalconditionisclear:Theprofitavailablebyproducingeitherabitmoreorabitlessthanqmustbesmallerthanthatavailablefromq.Ifthisisnottrue,themanagercandobetterthanq.Mathematically,thismeansthatdπ=dqmustbegreaterFIGURE2.2TwoProfitFunctionsThatGiveMisleadingResultsIftheFirstDerivativeRuleIsAppliedUncriticallyIn(a),theapplicationofthefirstderivativerulewouldresultinpointqabeingchosen.Thispointisinfactapointofminimumprofits.Similarly,in(b),outputlevelqbwouldberecommendedbythefirstderivativerule,butthispointisinferiortoalloutputsgreaterthanqb.Thisdemonstratesgraphicallythatfindingapointatwhichthederivativeisequalto0isanecessary,butnotasufficient,conditionforafunctiontoattainitsmaximumvalue.q*aπ*bπ*aq*bπQuantity(a)(b)πQuantityChapter2MathematicsforMicroeconomics21
than0forq
Thesecond-orderpartialderivativesforEquation2.99aref11¼2,f22¼2,f12¼0:(2.102)ThesederivativesclearlyobeyEquations2.97and2.98,sobothnecessaryandsufficientconditionsforalocalmaximumaresatisfied.15QUERY:Describetheconcaveshapeofthehealthstatusfunctionandindicatewhyithasonlyasingleglobalmaximumvalue.ConstrainedmaximizationAsanotherillustrationofsecond-orderconditions,considertheproblemofchoosingx1andx2tomaximizey¼fðx1,x2Þ,(2.103)subjecttothelinearconstraintcb1x1b2x2¼0(2.104)(wherec,b1,b2areconstantparametersintheproblem).Thisproblemisofatypethatwillbefrequentlyencounteredinthisbookandisaspecialcaseoftheconstrainedmaximumproblemsthatweexaminedearlier.Thereweshowedthatthefirst-orderconditionsforamaximummaybederivedbysettinguptheLagrangianexpressionℒ¼fðx1,x2Þþλðcb1x1b2x2Þ:(2.105)Partialdifferentiationwithrespecttox1,x2,andλyieldsthefamiliarresults:f1λb1¼0,f2λb2¼0,cb1x1b2x2¼0:(2.106)Theseequationscaningeneralbesolvedfortheoptimalvaluesofx1,x2,andλ.Toensurethatthepointderivedinthatwayisalocalmaximum,wemustagainexaminemovementsawayfromthecriticalpointsbyusingthe“second”totaldifferential:d2y¼f11dx21þ2f12dx1dx2þf22dx22:(2.107)Inthiscase,however,notallpossiblesmallchangesinthex’sarepermissible.Onlythosevaluesofx1andx2thatcontinuetosatisfytheconstraintcanbeconsideredvalidalternativestothecriticalpoint.Toexaminesuchchanges,wemustcalculatethetotaldifferentialoftheconstraint:b1dx1b2dx2¼0(2.108)ordx2¼b1b2dx1:(2.109)15NoticethatEquations2.102obeythesufficientconditionsnotonlyatthecriticalpointbutalsoforallpossiblechoicesofx1andx2.Thatis,thefunctionisconcave.Inmorecomplexexamplesthisneednotbethecase:Thesecond-orderconditionsneedbesatisfiedonlyatthecriticalpointforalocalmaximumtooccur.Chapter2MathematicsforMicroeconomics49
Thisequationshowstherelativechangesinx1andx2thatareallowableinconsideringmovementsfromthecriticalpoint.Toproceedfurtheronthisproblem,weneedtousethefirst-orderconditions.Thefirsttwooftheseimplyf1f2¼b1b2,(2.110)andcombiningthisresultwithEquation2.109yieldsdx2¼f1f2dx1:(2.111)Wenowsubstitutethisexpressionfordx2inEquation2.107todemonstratetheconditionsthatmustholdford2ytobenegative:d2y¼f11dx21þ2f12dx1f1f2dx1þf22f1f2dx12¼f11dx212f12f1f2dx21þf22f21f22dx21:(2.112)Combiningtermsandputtingeachoveracommondenominatorgivesd2y¼ðf11f222f12f1f2þf22f21Þdx21f22:(2.113)Consequently,ford2y<0,itmustbethecasethatf11f222f12f1f2þf22f21<0:(2.114)Quasi-concavefunctionsAlthoughEquation2.114appearstobelittlemorethananinordinatelycomplexmassofmathematicalsymbols,infacttheconditionisanimportantone.Itcharacterizesasetoffunctionstermedquasi-concavefunctions.Thesefunctionshavethepropertythatthesetofallpointsforwhichsuchafunctiontakesonavaluegreaterthananyspecificconstantisaconvexset(thatis,anytwopointsinthesetcanbejoinedbyalinecontainedcompletelywithintheset).Manyeconomicmodelsarecharacterizedbysuchfunctionsand,aswewillseeinconsiderabledetailinChapter3,inthesecasestheconditionforquasi-concavityhasarelativelysimpleeconomicinterpretation.Problems2.9and2.10examinetwospecificquasi-concavefunctionsthatwewillfrequentlyencounterinthisbook.Example2.10showstherelationshipbetweenconcaveandquasi-concavefunctions.EXAMPLE2.10ConcaveandQuasi-ConcaveFunctionsThedifferencesbetweenconcaveandquasi-concavefunctionscanbeillustratedwiththefunction16y¼fðx1,x2Þ¼ðx1⋅x2Þk,(2.115)wherethex’stakeononlypositivevalues,andtheparameterkcantakeonavarietyofpositivevalues.16ThisfunctionisaspecialcaseoftheCobb-Douglasfunction.SeealsoProblem2.10andtheExtensionstothischapterformoredetailsonthisfunction.50Part1Introduction
Nomatterwhatvaluektakes,thisfunctionisquasi-concave.Onewaytoshowthisistolookatthe“levelcurves”ofthefunctionbysettingyequaltoaspecificvalue,sayc.Inthiscasey¼c¼ðx1x2Þkorx1x2¼c1=k¼c0:(2.116)Butthisisjusttheequationofastandardrectangularhyperbola.Clearlythesetofpointsforwhichytakesonvalueslargerthancisconvexbecauseitisboundedbythishyperbola.Amoremathematicalwaytoshowquasi-concavitywouldapplyEquation2.114tothisfunction.Althoughthealgebraofdoingthisisabitmessy,itmaybeworththestruggle.ThevariouscomponentsofEquation2.114are:f1¼kxk11xk2,f2¼kxk1xk12,f11¼kðk1Þxk21xk2,f22¼kðk1Þxk1xk22,f12¼k2xk11xk12:(2.117)So,f11f222f12f1f2þf22f21¼k3ðk1Þx3k21x3k222k4x3k21x3k22þk3ðk1Þx3k21x3k22¼2k3x3k21x3k22ð1Þ,(2.118)whichisclearlynegative,asisrequiredforquasi-concavity.Whetherornotthefunctionfisconcavedependsonthevalueofk.Ifk<0:5thefunctionisindeedconcave.Anintuitivewaytoseethisistoconsideronlypointswherex1¼x2.Forthesepoints,y¼ðx21Þk¼x2k1,(2.119)which,fork<0:5,isconcave.Alternatively,fork>0:5,thisfunctionisconvex.AmoredefinitiveproofmakesuseofthepartialderivativesfromEquation2.117.Inthiscasetheconditionforconcavitycanbeexpressedasf11f22f212¼k2ðk1Þ2x2k21x2k22k4x2k21x2k22¼x2k21x2k22½k2ðk1Þ2k4¼x2k11x2k12½k2ð2kþ1Þ,(2.120)andthisexpressionispositive(asisrequiredforconcavity)forð2kþ1Þ>0ork<0:5:Ontheotherhand,thefunctionisconvexfork>0:5.Agraphicillustration.Figure2.4providesthree-dimensionalillustrationsofthreespecificexamplesofthisfunction:fork¼0:2,k¼0:5,andk¼1.Noticethatinallthreecasesthelevelcurvesofthefunctionhavehyperbolic,convexshapes.Thatis,foranyfixedvalueofythefunctionsarequitesimilar.Thisshowsthequasi-concavityofthefunction.Theprimarydifferencesamongthefunctionsareillustratedbythewayinwhichthevalueofyincreasesas(continued)Chapter2MathematicsforMicroeconomics51
EXAMPLE2.10CONTINUEDbothx’sincreasetogether.InFigure2.4a(whenk¼0:2),theincreaseinyslowsasthex’sincrease.Thisgivesthefunctionarounded,teacuplikeshapethatindicatesitsconcavity.Fork¼0:5,yappearstoincreaselinearlywithincreasesinbothofthex’s.Thisistheborderlinebetweenconcavityandconvexity.Finally,whenk¼1(asinFigure2.4c),simultaneousincreasesinthevaluesofbothofthex’sincreaseyveryrapidly.Thespineofthefunctionlooksconvextoreflectsuchincreasingreturns.FIGURE2.4ConcaveandQuasi-ConcaveFunctionsInallthreecasesthesefunctionsarequasi-concave.Forafixedy,theirlevelcurvesareconvex.Butonlyfork¼0:2isthefunctionstrictlyconcave.Thecasek¼1:0clearlyshowsnonconcavitybecausethefunctionisnotbelowitstangentplane.(a) k= 0.2(b) k= 0.5(c) k= 1.052Part1Introduction
AcarefullookatFigure2.4asuggeststhatanyfunctionthatisconcavewillalsobequasi-concave.YouareaskedtoprovethatthisisindeedthecaseinProblem2.8.Thisexampleshowsthattheconverseofthisstatementisnottrue—quasi-concavefunctionsneednotnecessarilybeconcave.Mostfunctionswewillencounterinthisbookwillalsoillustratethisfact;mostwillbequasi-concavebutnotnecessarilyconcave.QUERY:ExplainwhythefunctionsillustratedbothinFigure2.4aand2.4cwouldhavemaxi-mumvaluesifthex’sweresubjecttoalinearconstraint,butonlythegraphinFigure2.4awouldhaveanunconstrainedmaximum.HOMOGENEOUSFUNCTIONSManyofthefunctionsthatarisenaturallyoutofeconomictheoryhaveadditionalmathemat-icalproperties.Oneparticularlyimportantsetofpropertiesrelatestohowthefunctionsbehavewhenall(ormost)oftheirargumentsareincreasedproportionally.Suchsituationsarisewhenweaskquestionssuchaswhatwouldhappenifallpricesincreasedby10percentorhowwouldafirm’soutputchangeifitdoubledalloftheinputsthatituses.Thinkingaboutthesequestionsleadsnaturallytotheconceptofhomogeneousfunctions.Specifically,afunctionfðx1,x2,…,xnÞissaidtobehomogeneousofdegreekiffðtx1,tx2,…,txnÞ¼tkfðx1,x2,…,xnÞ:(2.121)Themostimportantexamplesofhomogeneousfunctionsarethoseforwhichk¼1ork¼0.Inwords,whenafunctionishomogeneousofdegreeone,adoublingofallofitsargumentsdoublesthevalueofthefunctionitself.Forfunctionsthatarehomogeneousofdegree0,adoublingofallofitsargumentsleavesthevalueofthefunctionunchanged.Functionsmayalsobehomogeneousforchangesinonlycertainsubsetsoftheirarguments—thatis,adoublingofsomeofthex’smaydoublethevalueofthefunctioniftheotherargumentsofthefunctionareheldconstant.Usually,however,homogeneityappliestochangesinalloftheargumentsinafunction.HomogeneityandderivativesIfafunctionishomogeneousofdegreekandcanbedifferentiated,thepartialderivativesofthefunctionwillbehomogeneousofdegreek1.Aproofofthisfollowsdirectlyfromthedefinitionofhomogeneity.Forexample,differentiatingEquation2.121withrespecttoitsfirstargumentgives∂fðtx1,…,txnÞ∂x1⋅t¼tk∂fðx1,…,xnÞ∂x1orf1ðtx1,…,txnÞ¼tk1f1ðx1,…,xnÞ,(2.122)whichshowsthatf1meetsthedefinitionforhomogeneityofdegreek1.Becausemarginalideasaresoprevalentinmicroeconomictheory,thispropertyshowsthatsomeimportantpropertiesofmarginaleffectscanbeinferredfromthepropertiesoftheunderlyingfunctionitself.Chapter2MathematicsforMicroeconomics53
Euler’stheoremAnotherusefulfeatureofhomogeneousfunctionscanbeshownbydifferentiatingthedefinitionforhomogeneitywithrespecttotheproportionalityfactor,t.Inthiscase,wedifferentiatetherightsideofEquation2.121first:ktk1f1ðx1,…,xnÞ¼x1f1ðtx1,…,txnÞþ…þxnfnðtx1,…,txnÞ:Ifwelett¼1,thisequationbecomeskfðx1,…,xnÞ¼x1f1ðx1,…,xnÞþ…þxnfnðx1,…,xnÞ:(2.123)ThisequationistermedEuler’stheorem(afterthemathematicianwhoalsodiscoveredtheconstante)forhomogeneousfunctions.Itshowsthat,forahomogeneousfunction,thereisadefiniterelationshipbetweenthevaluesofthefunctionandthevaluesofitspartialderivatives.Severalimportanteconomicrelationshipsamongfunctionsarebasedonthisobservation.HomotheticfunctionsAhomotheticfunctionisonethatisformedbytakingamonotonictransformationofahomogeneousfunction.17Monotonictransformations,bydefinition,preservetheorderoftherelationshipbetweentheargumentsofafunctionandthevalueofthatfunction.Ifcertainsetsofx’syieldlargervaluesforf,theywillalsoyieldlargervaluesforamonotonictransfor-mationoff.Becausemonotonictransformationsmaytakemanyforms,however,theywouldnotbeexpectedtopreserveanexactmathematicalrelationshipsuchasthatembodiedinhomogeneousfunctions.Consider,forexample,thefunctionfðx,yÞ¼x⋅y.Clearlythisfunctionishomogeneousofdegree2—adoublingofitstwoargumentswillmultiplythevalueofthefunctionby4.Butthemonotonictransformation,F,thatsimplyadds1tof[thatis,FðfÞ¼fþ1¼xyþ1]isnothomogeneousatall.Hence,exceptinspecialcases,homo-theticfunctionsdonotpossessthehomogeneitypropertiesoftheirunderlyingfunctions.Homotheticfunctionsdo,however,preserveonenicefeatureofhomogeneousfunctions.Thispropertyisthattheimplicittrade-offsamongthevariablesinafunctiondependonlyontheratiosofthosevariables,notontheirabsolutevalues.Hereweshowthisforthesimpletwo-variable,implicitfunctionfðx,yÞ¼0.Itwillbeeasiertodemonstratemoregeneralcaseswhenwegettotheeconomicsofthematterlaterinthisbook.Equation2.28showedthattheimplicittrade-offbetweenxandyforatwo-variablefunctionisgivenbydydx¼fxfy:Ifweassumefishomogeneousofdegreek,itspartialderivativeswillbehomogeneousofdegreek1andtheimplicittrade-offbetweenxandyisdydx¼tk1fxðtx,tyÞtk1fyðtx,tyÞ¼fxðtx,tyÞfyðtx,tyÞ:(2.124)Nowlett¼1=yandEquation2.124becomesdydx¼fxðx=y,1Þfyðx=y,1Þ,(2.125)whichshowsthatthetrade-offdependsonlyontheratioofxtoy.Nowifweapplyanymonotonictransformation,F(withF0>0),totheoriginalhomogeneousfunctionf,wehave17Becausealimitingcaseofamonotonictransformationistoleavethefunctionunchanged,allhomogeneousfunctionsarealsohomothetic.54Part1Introduction
dydx¼F0fxðx=y,1ÞF0fyðx=y,1Þ¼fxðx=y,1Þfyðx=y,1Þ,(2.126)andthisshowsboththatthetrade-offisunaffectedbythemonotonictransformationandthatitremainsafunctiononlyoftheratioofxtoy.InChapter3(andelsewhere)thispropertywillmakeitveryconvenienttodiscusssometheoreticalresultswithsimpletwo-dimensionalgraphs,forwhichweneednotconsidertheoveralllevelsofkeyvariables,butonlytheirratios.EXAMPLE2.11CardinalandOrdinalPropertiesInappliedeconomicsitissometimesimportanttoknowtheexactnumericalrelationshipamongvariables.Forexample,inthestudyofproduction,onemightwishtoknowpreciselyhowmuchextraoutputwouldbeproducedbyhiringanotherworker.Thisisaquestionaboutthe“cardinal”(i.e.,numerical)propertiesoftheproductionfunction.Inothercases,onemayonlycareabouttheorderinwhichvariouspointsareranked.Inthetheoryofutility,forexample,weassumethatpeoplecanrankbundlesofgoodsandwillchoosethebundlewiththehighestranking,butthattherearenouniquenumericalvaluesassignedtotheserankings.Mathematically,ordinalpropertiesoffunctionsarepreservedbyanymonotonictransformationbecause,bydefinition,amonotonictransformationpre-servesorder.Usually,however,cardinalpropertiesarenotpreservedbyarbitrarymono-tonictransformations.ThesedistinctionsareillustratedbythefunctionsweexaminedinExample2.10.Therewestudiedmonotonictransformationsofthefunctionfðx1,x2Þ¼ðx1x2Þk(2.127)byconsideringvariousvaluesoftheparameterk.Weshowedthatquasi-concavity(anordinalproperty)waspreservedforallvaluesofk.Hence,whenapproachingproblemsthatfocusonmaximizingorminimizingsuchafunctionsubjecttolinearconstraintsweneednotworryaboutpreciselywhichtransformationisused.Ontheotherhand,thefunctioninEquation2.127isconcave(acardinalproperty)onlyforanarrowrangeofvaluesofk.Manymonotonictransformationsdestroytheconcavityoff.ThefunctioninEquation2.127alsocanbeusedtoillustratethedifferencebetweenhomogeneousandhomotheticfunctions.Aproportionalincreaseinthetwoargumentsoffwouldyieldfðtx1,tx2Þ¼t2kx1x2¼t2kfðx1,x2Þ:(2.128)Hence,thedegreeofhomogeneityforthisfunctiondependsonk—thatis,thedegreeofhomogeneityisnotpreservedindependentlyofwhichmonotonictransformationisused.Alternatively,thefunctioninEquation2.127ishomotheticbecausedx2dx1¼f1f2¼kxk11xk2kxk1xk12¼x2x1:(2.129)Thatis,thetrade-offbetweenx2andx1dependsonlyontheratioofthesetwovariablesandisunaffectedbythevalueofk.Hence,homotheticityisanordinalproperty.Asweshallsee,thispropertyisquiteconvenientwhendevelopinggraphicalargumentsabouteconomicpropositions.QUERY:Howwouldthediscussioninthisexamplebechangedifweconsideredmonotonictransformationsoftheformfðx1,x2,kÞ¼x1x2þkforvariousvaluesofk?Chapter2MathematicsforMicroeconomics55
INTEGRATIONIntegrationisanotherofthetoolsofcalculusthatfindsanumberofapplicationsinmicroeco-nomictheory.Thetechniqueisusedbothtocalculateareasthatmeasurevariouseconomicoutcomesand,moregenerally,toprovideawayofsummingupoutcomesthatoccurovertimeoracrossindividuals.Ourtreatmentofthetopicherenecessarilymustbebrief,soreadersdesiringamorecompletebackgroundshouldconsultthereferencesattheendofthischapter.Anti-derivativesFormally,integrationistheinverseofdifferentiation.Whenyouareaskedtocalculatetheintegralofafunction,fðxÞ,youarebeingaskedtofindafunctionthathasfðxÞasitsderivative.Ifwecallthis“anti-derivative”FðxÞ,thisfunctionissupposedtohavethepropertythatdFðxÞdx¼F0ðxÞ¼fðxÞ:(2.130)IfsuchafunctionexiststhenwedenoteitasFðxÞ¼∫fðxÞdx:(2.131)Theprecisereasonforthisratherodd-lookingnotationwillbedescribedindetaillater.First,let’slookatafewexamples.IffðxÞ¼xthenFðxÞ¼∫fðxÞdx¼∫xdx¼x22þC,(2.132)whereCisanarbitrary“constantofintegration”thatdisappearsupondifferentiation.Thecorrectnessofthisresultcanbeeasilyverified:F0ðxÞ¼dðx2=2þCÞdx¼xþ0¼x:(2.133)Calculatinganti-derivativesCalculationofanti-derivativescanbeextremelysimple,ordifficult,oragonizing,orimpossi-ble,dependingontheparticularfðxÞspecified.Herewewilllookatthreesimplemethodsformakingsuchcalculations,but,asyoumightexpect,thesewillnotalwayswork.1.Creativeguesswork.Probablythemostcommonwayoffindingintegrals(anti-derivatives)istoworkbackwardsbyasking“whatfunctionwillyieldfðxÞasitsderivative?”Hereareafewobviousexamples:FðxÞ¼∫x2dx¼x33þC,FðxÞ¼∫xndx¼xnþ1nþ1þC,FðxÞ¼∫ðax2þbxþcÞdx¼ax33þbx22þcxþC,FðxÞ¼∫exdx¼exþC,FðxÞ¼∫axdx¼axlnaþC,FðxÞ¼∫1xdx¼lnðjxjÞþC,FðxÞ¼∫ðlnxÞdx¼xlnxxþC:(2.134)56Part1Introduction
YoushouldusedifferentiationtocheckthatalloftheseobeythepropertythatF0ðxÞ¼fðxÞ.Noticethatineverycasetheintegralincludesaconstantofintegrationbecauseanti-deriva-tivesareuniqueonlyuptoanadditiveconstantwhichwouldbecomezeroupondifferentia-tion.Formanypurposes,theresultsinEquation2.134(ortrivialgeneralizationsofthem)willbesufficientforourpurposesinthisbook.Nevertheless,herearetwomoremethodsthatmayworkwhenintuitionfails.2.Changeofvariable.Acleverredefinitionofvariablesmaysometimesmakeafunctionmucheasiertointegrate.Forexample,itisnotatallobviouswhattheintegralof2x=ð1þx2Þis.But,ifwelety¼1þx2,thendy¼2xdxand∫2×1þx2dx¼∫1ydy¼lnðjyjÞ¼lnðj1þx2jÞ:(2.135)Thekeytothisprocedureisinbreakingtheoriginalfunctionintoaterminyandatermindy.Ittakesalotofpracticetoseepatternsforwhichthiswillwork.3.Integrationbyparts.Asimilarmethodforfindingintegralsmakesuseofthedifferen-tialexpressionduv¼udvþvduforanytwofunctionsuandv.Integrationofthisdifferentialyields∫duv¼uv¼∫udvþ∫vduor∫udv¼uv∫vdu:(2.136)Herethestrategyistodefinefunctionsuandvinawaythattheunknownintegralontheleftcanbecalculatedbythedifferencebetweenthetwoknownexpressionsontheright.Forexample,itisbynomeansobviouswhattheintegralofxexis.Butwecandefineu¼x(sodu¼dx)anddv¼exdx(sov¼ex).Hencewenowhave∫xexdx¼∫udv¼uv∫vdu¼xex∫exdx¼ðx1ÞexþC:(2.137)Again,onlypracticecansuggestusefulpatternsinthewaysinwhichuandvcanbedefined.DefiniteintegralsTheintegralswehavebeendiscussingsofarare“indefinite”integrals—theyprovideonlyageneralfunctionthatistheanti-derivativeofanotherfunction.Asomewhatdifferent,thoughrelated,approachusesintegrationtosumuptheareaunderagraphofafunctionoversomedefinedinterval.Figure2.5illustratesthisprocess.WewishtoknowtheareaunderthefunctionfðxÞfromx¼atox¼b.Onewaytodothiswouldbetopartitiontheintervalintonarrowsliversofxð∆xÞandsumuptheareasoftherectanglesshowninthefigure.Thatis:areaunderfðxÞXifðxiÞ∆xi,(2.138)wherethenotationisintendedtoindicatethattheheightofeachrectangleisapproximatedbythevalueoffðxÞforavalueofxintheinterval.Takingthisprocesstothelimitbyshrinkingthesizeofthe∆xintervalsyieldsanexactmeasureoftheareawewantandisdenotedby:areaunderfðxÞ¼∫x¼bx¼afðxÞdx:(2.139)Thisthenexplainstheoriginoftheoddlyshapedintegralsign—itisastylizedS,indicating“sum.”Asweshallsee,integratingisaverygeneralwayofsummingthevaluesofacontinuousfunctionoversomeinterval.Chapter2MathematicsforMicroeconomics57
FundamentaltheoremofcalculusEvaluatingtheintegralinEquation2.139isverysimpleifweknowtheanti-derivativeoffðxÞ,say,FðxÞ.InthiscasewehaveareaunderfðxÞ¼∫x¼bx¼afðxÞdx¼FðbÞFðaÞ:(2.140)Thatis,allweneeddoiscalculatetheanti-derivativeoffðxÞandsubtractthevalueofthisfunctionatthelowerlimitofintegrationfromitsvalueattheupperlimitofintegration.Thisresultissometimestermedthe“fundamentaltheoremofcalculus”becauseitdirectlytiestogetherthetwoprincipaltoolsofcalculus,derivativesandintegrals.InExample2.12,weshowthatthisresultismuchmoregeneralthansimplyawaytomeasureareas.Itcanbeusedtoillustrateoneoftheprimaryconceptualprinciplesofeconomics—thedistinctionbetween“stocks”and“flows.”EXAMPLE2.12StocksandFlowsThedefiniteintegralprovidesausefulwayforsummingupanyfunctionthatisprovidingacontinuousflowovertime.Forexample,supposethatnetpopulationincrease(birthsminusdeaths)foracountrycanbeapproximatedbythefunctionfðtÞ¼1,000e0:02t.Hence,thenetpopulationchangeisgrowingattherateof2percentperyear—itis1,000newpeopleinyear0,1,020newpeopleinthefirstyear,1,041inthesecondyear,andsoforth.Supposewewishtoknowhowmuchintotalthepopulationwillincreasewithin50years.Thismightbeatediouscalculationwithoutcalculus,butusingthefundamentaltheoremofcalculusprovidesaneasyanswer:FIGURE2.5DefiniteIntegralsShowtheAreasundertheGraphofaFunctionDefiniteintegralsmeasuretheareaunderacurvebysummingrectangularareasasshowninthegraph.ThedimensionofeachrectangleisfxðÞdx.f(x)f(x)abx58Part1Introduction
increaseinpopulation¼∫t¼50t¼0fðtÞdt¼∫t¼50t¼01,000e0:02tdt¼FðtÞ500¼1,000e0:02t0:02500¼1,000e0:0250,000¼85,914(2:141)[wherethenotationjbaindicatesthattheexpressionistobeevaluatedasFðbÞFðaÞ].Hence,theconclusionisthatthepopulationwillgrowbynearly86,000peopleoverthenext50years.Noticehowthefundamentaltheoremofcalculustiestogethera“flow”concept,netpopulationincrease(whichismeasuredasanamountperyear),witha“stock”concept,totalpopulation(whichismeasuredataspecificdateanddoesnothaveatimedimension).Notealsothatthe86,000calculationrefersonlytothetotalincreasebetweenyearzeroandyearfifty.Inordertoknowtheactualtotalpopulationatanydatewewouldhavetoaddthenumberofpeopleinthepopulationatyearzero.Thatwouldbesimilartochoosingaconstantofintegrationinthisspecificproblem.Nowconsideranapplicationwithmoreeconomiccontent.SupposethattotalcostsforaparticularfirmaregivenbyCðqÞ¼0:1q2þ500(whereqrepresentsoutputduringsomeperiod).Heretheterm0:1q2representsvariablecosts(coststhatvarywithoutput)whereasthe500figurerepresentsfixedcosts.Marginalcostsforthisproductionprocesscanbefoundthroughdifferentiation—MC¼dCðqÞ=dq¼0:2q—hence,marginalcostsareincreasingwithqandfixedcostsdropoutupondifferentiation.Whatarethetotalcostsassociatedwithproducing,say,q¼100?Onewaytoanswerthisquestionistousethetotalcostfunctiondirectly:Cð100Þ¼0:1ð100Þ2þ500¼1,500.Analternativewaywouldbetointegratemarginalcostovertherange0to100togettotalvariablecost:variablecost¼∫q¼100q¼00:2qdq¼0:1q21000¼1,0000¼1,000,(2.142)towhichwewouldhavetoaddfixedcostsof500(theconstantofintegrationinthisproblem)togettotalcosts.Ofcourse,thismethodofarrivingattotalcostismuchmorecumbersomethanjustusingtheequationfortotalcostdirectly.Butthederivationdoesshowthattotalvariablecostbetweenanytwooutputlevelscanbefoundthroughintegrationastheareabelowthemarginalcostcurve—aconclusionthatwewillfindusefulinsomegraphicalapplications.QUERY:Howwouldyoucalculatethetotalvariablecostassociatedwithexpandingoutputfrom100to110?Explainwhyfixedcostsdonotenterintothiscalculation.DifferentiatingadefiniteintegralOccasionallywewillwishtodifferentiateadefiniteintegral—usuallyinthecontextofseekingtomaximizethevalueofthisintegral.Althoughperformingsuchdifferentiationscansome-timesberathercomplex,thereareafewrulesthatshouldmaketheprocesseasier.1.Differentiationwithrespecttothevariableofintegration.Thisisatrickquestion,butinstructivenonetheless.Adefiniteintegralhasaconstantvalue;henceitsderivativeiszero.Thatis:d∫bafðxÞdxdx¼0:(2.143)Thesummingprocessrequiredforintegrationhasalreadybeenaccomplishedoncewewritedownadefiniteintegral.ItdoesnotmatterwhetherthevariableofintegrationisxortorChapter2MathematicsforMicroeconomics59
anythingelse.Thevalueofthisintegratedsumwillnotchangewhenthevariablexchanges,nomatterwhatxis(butseerule3below).2.Differentiationwithrespecttotheupperboundofintegration.Changingtheupperboundofintegrationwillobviouslychangethevalueofadefiniteintegral.Inthiscase,wemustmakeadistinctionbetweenthevariabledeterminingtheupperboundofintegration(say,x)andthevariableofintegration(say,t).Theresultthenisasimpleapplicationofthefundamentaltheoremofcalculus.Forexample:d∫xafðtÞdtdx¼d½FðxÞFðaÞdx¼fðxÞ0¼fðxÞ,(2.144)whereFðxÞistheantiderivativeoffðxÞ.ByreferringbacktoFigure2.5wecanseewhythisconclusionmakessense—weareaskinghowthevalueofthedefiniteintegralchangesifxincreasesslightly.Obviously,theansweristhatthevalueoftheintegralincreasesbytheheightoffðxÞ(noticethatthisvaluewillultimatelydependonthespecifiedvalueofx).Iftheupperboundofintegrationisafunctionofx,thisresultcanbegeneralizedusingthechainrule:d∫gðxÞafðtÞdtdðxÞ¼d½FðgðxÞÞFðaÞdx¼d½FðgðxÞÞdx¼fdgðxÞdx¼fg0ðxÞ,(2.145)where,again,thespecificvalueforthisderivativewoulddependonthevalueofxassumed.Finally,noticethatdifferentiationwithrespecttoalowerboundofintegrationjustchangesthesignofthisexpression:d∫bgðxÞfðtÞdtdx¼d½FðbÞFðgðxÞÞdx¼dFðgðxÞÞdx¼fg0ðxÞ:(2.146)3.Differentiationwithrespecttoanotherrelevantvariable.Insomecaseswemaywishtointegrateanexpressionthatisafunctionofseveralvariables.Ingeneral,thiscaninvolvemultipleintegralsanddifferentiationcanbecomequitecomplicated.Butthereisonesimplecasethatshouldbementioned.Supposethatwehaveafunctionoftwovariables,fðx,yÞ,andthatwewishtointegratethisfunctionwithrespecttothevariablex.Thespecificvalueforthisintegralwillobviouslydependonthevalueofyandwemightevenaskhowthatvaluechangeswhenychanges.Inthiscase,itispossibleto“differentiatethroughtheintegralsign”toobtainaresult.Thatis:d∫bafðx,yÞdxdy¼∫bafyðx,yÞdx:(2.147)Thisexpressionshowsthatwecanfirstpartiallydifferentiatefðx,yÞwithrespecttoybeforeproceedingtocomputethevalueofthedefiniteintegral.Ofcourse,theresultingvaluemaystilldependonthespecificvaluethatisassignedtoy,butoftenitwillyieldmoreeconomicinsightsthantheoriginalproblemdoes.SomefurtherexamplesofusingdefiniteintegralsarefoundinProblem2.8.DYNAMICOPTIMIZATIONSomeoptimizationproblemsthatariseinmicroeconomicsinvolvemultipleperiods.18Weareinterestedinfindingtheoptimaltimepathforavariableorsetofvariablesthatsucceedsinoptimizingsomegoal.Forexample,anindividualmaywishtochooseapathoflifetime18Throughoutthissectionwetreatdynamicoptimizationproblemsasoccurringovertime.Inothercontexts,thesametechniquescanbeusedtosolveoptimizationproblemsthatoccuracrossacontinuumoffirmsorindividualswhentheoptimalchoicesforoneagentaffectwhatisoptimalforothers.60Part1Introduction
consumptionsthatmaximizeshisorherutility.Orafirmmayseekapathforinputandoutputchoicesthatmaximizesthepresentvalueofallfutureprofits.Theparticularfeatureofsuchproblemsthatmakesthemdifficultisthatdecisionsmadeinoneperiodaffectoutcomesinlaterperiods.Hence,onemustexplicitlytakeaccountofthisinterrelationshipinchoosingoptimalpaths.Ifdecisionsinoneperioddidnotaffectlaterperiods,theproblemwouldnothavea“dynamic”structure—onecouldjustproceedtooptimizedecisionsineachperiodwithoutregardforwhatcomesnext.Here,however,wewishtoexplicitlyallowfordynamicconsiderations.TheoptimalcontrolproblemMathematiciansandeconomistshavedevelopedmanytechniquesforsolvingproblemsindynamicoptimization.Thereferencesattheendofthischapterprovidebroadintroductionstothesemethods.Here,however,wewillbeconcernedwithonlyonesuchmethodthathasmanysimilaritiestotheoptimizationtechniquesdiscussedearlierinthischapter—theoptimalcontrolproblem.Theframeworkoftheproblemisrelativelysimple.AdecisionmakerwishestofindtheoptimaltimepathforsomevariablexðtÞoveraspecifiedtimeinterval½t0,t1.Changesinxaregovernedbyadifferentialequation:dxðtÞdt¼g½xðtÞ,cðtÞ,t,(2.148)wherethevariablecðtÞisusedto“control”thechangeinxðtÞ.Ineachperiodoftime,thedecisionmakerderivesvaluefromxandcaccordingtothefunctionf½xðtÞ,cðtÞ,tandhisorhergoaltooptimize∫t1t0f½xðtÞ,cðtÞ,tdt.Oftenthisproblemwillalsobesubjectto“endpoint”constraintsonthevariablex.Thesemightbewrittenasxðt0Þ¼x0andxðt1Þ¼x1.Noticehowthisproblemis“dynamic.”Anydecisionabouthowmuchtochangexthisperiodwillaffectnotonlythefuturevalueofx,itwillalsoaffectfuturevaluesoftheoutcomefunctionf.TheproblemthenishowtokeepxðtÞonitsoptimalpath.Economicintuitioncanhelptosolvethisproblem.Supposethatwejustfocusedonthefunctionfandchosexandctomaximizeitateachinstantoftime.Therearetwodifficultieswiththis“myopic”approach.First,wearenotreallyfreeto“choose”xatanytime.Rather,thevalueofxwillbedeterminedbyitsinitialvaluex0andbyitshistoryofchangesasgivenbyEquation2.148.Asecondproblemwiththismyopicapproachisthatitdisregardsthedynamicnatureoftheproblembynotaskinghowthisperiod’sdecisionsaffectthefuture.Weneedsomewaytoreflectthedynamicsofthisprobleminasingleperiod’sdecisions.Assigningthecorrectvalue(price)toxateachinstantoftimewilldojustthat.BecausethisimplicitpricewillhavemanysimilaritiestotheLagrangianmultipliersstudiedearlierinthischapter,wewillcallitλðtÞ.Thevalueofxistreatedasafunctionoftimebecausetheimportanceofxcanobviouslychangeovertime.ThemaximumprincipleNowlet’slookatthedecisionmaker’sproblematasinglepointintime.Heorshemustbeconcernedwithboththecurrentvalueoftheobjectivefunctionf½xðtÞ,cðtÞ,tandwiththeimpliedchangeinthevalueofxðtÞ.BecausethecurrentvalueofxðtÞisgivenbyλðtÞxðtÞ,theinstantaneousrateofchangeofthisvalueisgivenby:d½λðtÞxðtÞdt¼λðtÞdxðtÞdtþxðtÞdλðtÞdt,(2.149)Chapter2MathematicsforMicroeconomics61
andsoatanytimetacomprehensivemeasureofthevalueofconcern19tothedecisionmakerisH¼f½xðtÞ,cðtÞ,tþλðtÞg½xðtÞ,cðtÞ,tþxðtÞdλðtÞdt:(2.150)Thiscomprehensivevaluerepresentsboththecurrentbenefitsbeingreceivedandtheinstantaneouschangeinthevalueofx.NowwecanaskwhatconditionsmustholdforxðtÞandcðtÞtooptimizethisexpression.20Thatis:∂H∂c¼fcþλgc¼0orfc¼λgc;∂H∂x¼fxþλgxþ∂λðtÞdt¼0orfxþλgx¼∂λðtÞ∂t:(2.151)Thesearethenthetwooptimalityconditionsforthisdynamicproblem.Theyareusuallyreferredtoasthe“maximumprinciple.”ThissolutiontotheoptimalcontrolproblemwasfirstproposedbytheRussianmathematicianL.S.Pontryaginandhiscolleaguesintheearly1960s.Althoughthelogicofthemaximumprinciplecanbestbeillustratedbytheeconomicapplicationswewillencounterlaterinthisbook,abriefsummaryoftheintuitionbehindthemmaybehelpful.Thefirstconditionasksabouttheoptimalchoiceofc.Itsuggeststhat,atthemargin,thegainfromcintermsofthefunctionfmustbebalancedbythelossesfromcintermsofthevalueofitsabilitytochangex.Thatis,presentgainsmustbeweighedagainstfuturecosts.ThesecondconditionrelatestothecharacteristicsthatanoptimaltimepathofxðtÞshouldhave.Itimpliesthat,atthemargin,anynetgainsfrommorecurrentx(eitherintermsofforintermsoftheaccompanyingvalueofchangesinx)mustbebalancedbychangesintheimpliedvalueofxitself.Thatis,thenetcurrentgainfrommorexmustbeweighedagainstthedecliningfuturevalueofx.EXAMPLE2.13AllocatingaFixedSupplyAsanextremelysimpleillustrationofthemaximumprinciple,assumethatsomeonehasinherited1,000bottlesofwinefromarichuncle.Heorsheintendstodrinkthesebottlesoverthenext20years.Howshouldthisbedonetomaximizetheutilityfromdoingso?Supposethatthisperson’sutilityfunctionforwineisgivenbyu½cðtÞ¼lncðtÞ.Hencetheutilityfromwinedrinkingexhibitsdiminishingmarginalutilityðu0>0,u00<0Þ.Thisper-son’sgoalistomaximize∫200u½cðtÞdt¼∫200lncðtÞdt:(2.152)LetxðtÞrepresentthenumberofbottlesofwineremainingattimet.Thisseriesiscon-strainedbyxð0Þ¼1,000andxð20Þ¼0.Thedifferentialequationdeterminingtheevolu-tionofxðtÞtakesthesimpleform:2119WedenotethiscurrentvalueexpressionbyHtosuggestitssimilaritytotheHamiltonianexpressionusedinformaldynamicoptimizationtheory.UsuallytheHamiltoniandoesnothavethefinalterminEquation2.150,however.20Noticethatthevariablexisnotreallyachoicevariablehere—itsvalueisdeterminedbyhistory.Differentiationwithrespecttoxcanberegardedasimplicitlyaskingthequestion:“IfxðtÞwereoptimal,whatcharacteristicswouldithave?”21Thesimpleformofthisdifferentialequation(wheredx=dtdependsonlyonthevalueofthecontrolvariable,c)meansthatthisproblemisidenticaltooneexploredusingthe“calculusofvariations”approachtodynamicoptimization.Insuchacase,onecansubstitutedx=dtintothefunctionfandthefirst-orderconditionsforamaximumcanbecompressedinto62Part1Introduction
dxðtÞdt¼cðtÞ:(2.153)Thatis,eachinstant’sconsumptionjustreducesthestockofremainingbottles.ThecurrentvalueHamiltonianexpressionforthisproblemisH¼lncðtÞþλ½cðtÞþxðtÞdλdt,(2.154)andthefirst-orderconditionsforamaximumare∂H∂c¼1cλ¼0,∂H∂x¼dλdt¼0:(2.155)Thesecondoftheseconditionsrequiresthatλ(theimplicitvalueofwine)beconstantovertime.Thismakesintuitivesense:becauseconsumingabottleofwinealwaysreducestheavailablestockbyonebottle,anysolutionwherethevalueofwinedifferedovertimewouldprovideanincentivetochangebehaviorbydrinkingmorewinewhenitischeapandlesswhenitisexpensive.CombiningthissecondconditionforamaximumwiththefirstconditionimpliesthatcðtÞitselfmustbeconstantovertime.IfcðtÞ¼k,thenumberofbottlesremainingatanytimewillbexðtÞ¼1,000kt.Ifk¼50,thesystemwillobeytheendpointconstraintsxð0Þ¼1000andxð20Þ¼0.Ofcourse,inthisproblemyoucouldprobablyguessthattheoptimumplanwouldbetodrinkthewineattherateof50bottlesperyearfor20yearsbecausediminishingmarginalutilitysuggestsonedoesnotwanttodrinkexcessivelyinanyperiod.Themaximumprincipleconfirmsthisintuition.Morecomplicatedutility.Nowlet’stakeamorecomplicatedutilityfunctionthatmayyieldmoreinterestingresults.Supposethattheutilityofconsumingwineatanydate,t,isgivenbyu½cðtÞ¼½cðtÞγ=γifγ6¼0,γ<1;lncðtÞifγ¼0:(2.156)Assumealsothattheconsumerdiscountsfutureconsumptionattherateδ.Hencethisperson’sgoalistomaximize∫200u½cðtÞdt¼∫200eδt½cðtÞγγdt(2.157)subjecttothefollowingconstraints:dxðtÞdt¼cðtÞ,xð0Þ¼1,000,xð20Þ¼0:(2.158)SettingupthecurrentvalueHamiltonianexpressionyieldsH¼eδt½cðtÞγγþλðcÞþxðtÞdλðtÞdt,(2.159)andthemaximumprinciplerequiresthat(continued)thesingleequationfx¼dfdx=dt=dt,whichistermedthe“Eulerequation.”InChapter17wewillencountermanyEulerequations.Chapter2MathematicsforMicroeconomics63
EXAMPLE2.13CONTINUED∂H∂c¼eδt½cðtÞγ1λ¼0and∂H∂x¼0þ0þdλdt¼0:(2.160)Hence,wecanagainconcludethattheimplicitvalueofthewinestock(λ)shouldbeconstantovertime(callthisconstantk)andthateδt½cðtÞγ1¼korcðtÞ¼k1=ðγ1Þeδt=ðγ1Þ:(2.161)So,optimalwineconsumptionshouldfallovertimeinordertocompensateforthefactthatfutureconsumptionisbeingdiscountedintheconsumer’smind.If,forexample,weletδ¼0:1andγ¼1(“reasonable”values,aswewillshowinlaterchapters),thencðtÞ¼k0:5e0:05t(2.162)Nowwemustdoabitmoreworkinchoosingktosatisfytheendpointconstraints.Wewant∫200cðtÞdt¼∫200k0:5e0:05tdt¼20k0:5e0:05t200¼20k0:5ðe11Þ¼12:64k0:5¼1,000:(2.163)Finally,then,wehavetheoptimalconsumptionplanascðtÞ79e0:05t:(2.164)Thisconsumptionplanrequiresthatwineconsumptionstartoutfairlyhighanddeclineatacontinuousrateof5percentperyear.Becauseconsumptioniscontinuouslydeclining,wemustuseintegrationtocalculatewineconsumptioninanyparticularyearðxÞasfollows:consumptioninyearx∫xx1cðtÞdt¼∫xx179e0:05tdt¼1,580e0:05txx1¼1,580ðe0:05ðx1Þe0:05xÞ:(2.165)Ifx¼1,consumptionisabout77bottlesinthisfirstyear.Consumptionthendeclinessmoothly,endingwithabout30bottlesbeingconsumedinthe20thyear.QUERY:Ourfirstillustrationwasjustanexampleofthesecondinwhichδ¼γ¼0.Explainhowalternativevaluesoftheseparameterswillaffectthepathofoptimalwineconsumption.Explainyourresultsintuitively(formoreonoptimalconsumptionovertime,seeChapter17).MATHEMATICALSTATISTICSInrecentyearsmicroeconomictheoryhasincreasinglyfocusedonissuesraisedbyuncertaintyandimperfectinformation.Tounderstandmuchofthisliterature,itisimportanttohaveagoodbackgroundinmathematicalstatistics.Thepurposeofthissectionis,therefore,tosummarizeafewofthestatisticalprinciplesthatwewillencounteratvariousplacesinthisbook.64Part1Introduction
RandomvariablesandprobabilitydensityfunctionsArandomvariabledescribes(innumericalform)theoutcomesfromanexperimentthatissubjecttochance.Forexample,wemightflipacoinandobservewhetheritlandsheadsortails.Ifwecallthisrandomvariablex,wecandenotethepossibleoutcomes(“realizations”)ofthevariableas:x¼1ifcoinisheads,0ifcoinistails:Noticethat,priortotheflipofthecoin,xcanbeeither1or0.Onlyaftertheuncertaintyisresolved(thatis,afterthecoinisflipped)doweknowwhatthevalueofxis.22DiscreteandcontinuousrandomvariablesTheoutcomesfromarandomexperimentmaybeeitherafinitenumberofpossibilitiesoracontinuumofpossibilities.Forexample,recordingthenumberthatcomesuponasingledieisarandomvariablewithsixoutcomes.Withtwodice,wecouldeitherrecordthesumofthefaces(inwhichcasethereare12outcomes,someofwhicharemorelikelythanothers)orwecouldrecordatwo-digitnumber,oneforthevalueofeachdie(inwhichcasetherewouldbe36equallylikelyoutcomes).Theseareexamplesofdiscreterandomvariables.Alternatively,acontinuousrandomvariablemaytakeonanyvalueinagivenrangeofrealnumbers.Forexample,wecouldviewtheoutdoortemperaturetomorrowasacontinuousvariable(assumingtemperaturescanbemeasuredveryfinely)rangingfrom,say,50°Cto+50°C.Ofcourse,someofthesetemperatureswouldbeveryunlikelytooccur,butinprinciplethepreciselymeasuredtemperaturecouldbeanywherebetweenthesetwobounds.Similarly,wecouldviewtomorrow’spercentagechangeinthevalueofaparticularstockindexastakingonallvaluesbetween100%and,say,+1,000%.Again,ofcourse,percentagechangesaround0%wouldbeconsiderablymorelikelytooccurthanwouldbetheextremevalues.ProbabilitydensityfunctionsForanyrandomvariable,itsprobabilitydensityfunction(PDF)showstheprobabilitythateachspecificoutcomewilloccur.Foradiscreterandomvariable,definingsuchafunctionposesnoparticulardifficulties.Inthecoinflipcase,forexample,thePDF[denotedbyfðxÞ]wouldbegivenbyfðx¼1Þ¼0:5,fðx¼0Þ¼0:5:(2.166)Fortherollofasingledie,thePDFwouldbe:fðx¼1Þ¼1=6,fðx¼2Þ¼1=6,fðx¼3Þ¼1=6,fðx¼4Þ¼1=6,fðx¼5Þ¼1=6,fðx¼6Þ¼1=6:(2.167)22Sometimesrandomvariablesaredenotedbyxetomakeadistinctionbetweenvariableswhoseoutcomeissubjecttorandomchanceand(nonrandom)algebraicvariables.Thisnotationaldevicecanbeusefulforkeepingtrackofwhatisrandomandwhatisnotinaparticularproblemandwewilluseitinsomecases.Whenthereisnoambiguity,however,wewillnotemploythisspecialnotation.Chapter2MathematicsforMicroeconomics65
NoticethatinbothofthesecasestheprobabilitiesspecifiedbythePDFsumto1.0.Thisisbecause,bydefinition,oneoftheoutcomesoftherandomexperimentmustoccur.Moregenerally,ifwedenotealloftheoutcomesforadiscreterandomvariablebyxifori¼1,…,n,thenwemusthave:Xni¼1fðxiÞ¼1:(2.168)ForacontinuousrandomvariablewemustbecarefulindefiningthePDFconcept.Becausesucharandomvariabletakesonacontinuumofvalues,ifweweretoassignanynon-zerovalueastheprobabilityforaspecificoutcome(i.e.,atemperatureof+25.53470°C),wecouldquicklyhavesumsofprobabilitiesthatareinfinitelylarge.Hence,foracontinuousrandomvariablewedefinethePDFfðxÞasafunctionwiththepropertythattheprobabilitythatxfallsinaparticularsmallintervaldxisgivenbytheareaoffðxÞdx.Usingthisconvention,thepropertythattheprobabilitiesfromarandomexperimentmustsumto1.0isstatedasfollows:∫þ∞∞fðxÞdx¼1:0:(2.169)AfewimportantPDFsMostanyfunctionwilldoasaprobabilitydensityfunctionprovidedthatfðxÞ0andthefunctionsums(orintegrates)to1.0.Thetrick,ofcourse,istofindfunctionsthatmirrorrandomexperimentsthatoccurintherealworld.Herewelookatfoursuchfunctionsthatwewillfindusefulinvariousplacesinthisbook.GraphsforallfourofthesefunctionsareshowninFigure2.6.1.Binomialdistribution.Thisisthemostbasicdiscretedistribution.Usuallyxisassumedtotakeononlytwovalues,1and0.ThePDFforthebinomialisgivenby:fðx¼1Þ¼p,fðx¼0Þ¼1p,where0
whereλisapositiveconstant.Again,itiseasytoshowthatthisfunctionintegratesto1.0:∫þ∞∞fðxÞdx¼∫∞0λeλxdx¼eλx∞0¼0ð1Þ¼1:0:(2.174)4.Normaldistribution.TheNormal(orGaussian)distributionisthemostimportantinmathematicalstatistics.It’simportancestemslargelyfromthecentrallimittheorem,whichstatesthatthedistributionofanysumofindependentrandomvariableswillincreasinglyFIGURE2.6FourCommonProbabilityDensityFunctionsRandomvariablesthathavethesePDFsarewidelyused.EachgraphindicatestheexpectedvalueofthePDFshown.f(x)f(x)f(x)1/ 2π√–––x0f(x)P0(a) Binomial(c) Exponential(d) Normal(b) Uniform1–PPab1xxb–aa+b2λ1/λ1xChapter2MathematicsforMicroeconomics67
approximatetheNormaldistributionasthenumberofsuchvariablesincrease.Becausesampleaveragescanberegardedassumsofindependentrandomvariables,thistheoremsaysthatanysampleaveragewillhaveaNormaldistributionnomatterwhatthedistributionofthepopulationfromwhichthesampleisselected.Hence,itmayoftenbeappropriatetoassumearandomvariablehasaNormaldistributionifitcanbethoughtofassomesortofaverage.ThemathematicalformfortheNormalPDFisfðxÞ¼1ffiffiffiffiffiffiffi2πpex2=2,(2.175)andthisisdefinedforallrealvaluesofx.Althoughthefunctionmaylookcomplicated,afewofitspropertiescanbeeasilydescribed.First,thefunctionissymmetricaroundzero(becauseofthex2term).Second,thefunctionisasymptotictozeroasxbecomesverylargeorverysmall.Third,thefunctionreachesitsmaximalvalueatx¼0.Thisvalueis1=ffiffiffiffiffiffi2πp0:4.Finally,thegraphofthisfunctionhasageneral“bellshape”—ashapeusedthroughoutthestudyofstatistics.Integrationofthisfunctionisrelativelytricky(thougheasyinpolarcoordinates).Thepresenceoftheconstant1=ffiffiffiffiffiffi2πpisneededifthefunctionistointegrateto1.0.ExpectedvalueTheexpectedvalueofarandomvariableisthenumericalvaluethattherandomvariablemightbeexpectedtohave,onaverage.23Itisthe“centerofgravity”oftheprobabilitydensityfunction.Foradiscreterandomvariablethattakesonthevaluesx1,x2,…,xn,theexpectedvalueisdefinedasEðxÞ¼Xni¼1xifðxiÞ:(2.176)Thatis,eachoutcomeisweightedbytheprobabilitythatitwilloccurandtheresultissummedoverallpossibleoutcomes.Foracontinuousrandomvariable,Equation2.176isreadilygeneralizedasEðxÞ¼∫þ∞∞xfðxÞdx:(2.177)Again,inthisintegration,eachvalueofxisweightedbytheprobabilitythatthisvaluewilloccur.Theconceptofexpectedvaluecanbegeneralizedtoincludetheexpectedvalueofanyfunctionofarandomvariable[say,gðxÞ].Inthecontinuouscase,forexample,wewouldwriteE½gðxÞ¼∫þ∞∞gðxÞfðxÞdx:(2.178)23Theexpectedvalueofarandomvariableissometimesreferredtoasthemeanofthatvariable.Inthestudyofsamplingthiscansometimesleadtoconfusionbetweentheexpectedvalueofarandomvariableandtheseparateconceptofthesamplearithmeticaverage.68Part1Introduction
Asaspecialcase,consideralinearfunctiony¼axþb.ThenEðyÞ¼EðaxþbÞ¼∫þ∞∞ðaxþbÞfðxÞdx¼a∫þ∞∞xfðxÞdxþb∫þ∞∞fðxÞdx¼aEðxÞþb:(2:179)Sometimesexpectedvaluesarephrasedintermsofthecumulativedistributionfunction(CDF)FðxÞ,definedasFðxÞ¼∫x∞fðtÞdt:(2.180)Thatis,FðxÞrepresentstheprobabilitythattherandomvariabletislessthanorequaltox.Withthisnotation,theexpectedvalueofgðxÞisdefinedasE½gðxÞ¼∫þ∞∞gðxÞdFðxÞ:(2.181)Becauseofthefundamentaltheoremofcalculus,Equation2.181andEquation2.178meanexactlythesamething.EXAMPLE2.14ExpectedValuesofaFewRandomVariablesTheexpectedvaluesofeachoftherandomvariableswiththesimplePDFsintroducedearlierareeasytocalculate.Alloftheseexpectedvaluesareindicatedonthegraphsofthefunctions’PDFsinFigure2.6.1.Binomial.Inthiscase:EðxÞ¼1⋅fðx¼1Þþ0⋅fðx¼0Þ¼1⋅pþ0⋅ð1pÞ¼p:(2.182)Forthecoinflipcase(wherep¼0:5),thissaysthatEðxÞ¼p¼0:5—theexpectedvalueofthisrandomvariableis,asyoumighthaveguessed,onehalf.2.Uniform.Forthiscontinuousrandomvariable,EðxÞ¼∫baxbadx¼x22ðbaÞba¼b22ðbaÞa22ðbaÞ¼bþa2:(2.183)Again,asyoumighthaveguessed,theexpectedvalueoftheuniformdistributionispreciselyhalfwaybetweenaandb.3.Exponential.Forthiscaseofdecliningprobabilities:EðxÞ¼∫∞0xλeλxdx¼xeλx1λeλx∞0¼1λ,(2.184)wheretheintegrationfollowsfromtheintegrationbypartsexampleshownearlierinthischapter(Equation2.137).Noticeherethatthefastertheprobabilitiesdecline,theloweristheexpectedvalueofx.Forexample,ifλ¼0:5thenEðxÞ¼2,whereasifλ¼0:05thenEðxÞ¼20.(continued)Chapter2MathematicsforMicroeconomics69
EXAMPLE2.14CONTINUED4.Normal.BecausetheNormalPDFissymmetricaroundzero,itseemsclearthatEðxÞ¼0.Aformalproofusesachangeofvariableintegrationbylettingu¼x2=2ðdu¼xdxÞ:∫þ∞∞1ffiffiffiffiffiffiffi2πpxex2=2dx¼1ffiffiffiffiffiffiffi2πp∫þ∞∞eudu¼1ffiffiffiffiffiffiffi2πp½ex2=2þ∞∞¼1ffiffiffiffiffiffiffi2πp½00¼0:(2.185)Ofcourse,theexpectedvalueofanormallydistributedrandomvariable(orofanyrandomvariable)maybealteredbyalineartransformation,asshowninEquation2.179.QUERY:Alineartransformationchangesarandomvariable’sexpectedvalueinaverypredictableway—ify¼axþb,thenEðyÞ¼aEðxÞþb.Hence,forthistransformation[say,hðxÞ]wehaveE½hðxÞ¼h½EðxÞ.Supposeinsteadthatxweretransformedbyaconcavefunction,saygðxÞwithg0>0andg00<0.HowwouldE½gðxÞcomparetog½EðxÞ?Note:ThisisanillustrationofJensen’sinequality,aconceptwewillpursueindetailinChapter7.SeealsoProblem2.13.VarianceandstandarddeviationTheexpectedvalueofarandomvariableisameasureofcentraltendency.Ontheotherhand,thevarianceofarandomvariable[denotedbyσ2xorVarðxÞ]isameasureofdispersion.Specifically,thevarianceisdefinedasthe“expectedsquareddeviation”ofarandomvariablefromitsexpectedvalue.Formally:VarðxÞ¼σ2x¼E½ðxEðxÞÞ2¼∫þ∞∞ðxEðxÞÞ2fðxÞdx:(2.186)Somewhatimprecisely,thevariancemeasuresthe“typical”squareddeviationfromthecentralvalueofarandomvariable.Inmakingthecalculation,deviationsfromtheexpectedvaluearesquaredsothatpositiveandnegativedeviationsfromtheexpectedvaluewillbothcontributetothismeasureofdispersion.Afterthecalculationismade,thesquaringprocesscanbereversedtoyieldameasureofdispersionthatisintheoriginalunitsinwhichtherandomvariablewasmeasured.Thissquarerootofthevarianceiscalledthe“standarddeviation”andisdenotedasσxð¼ffiffiffiffiffiσ2xpÞ.Thewordingofthetermeffectivelyconveysitsmeaning:σxisindeedthetypical(“standard”)deviationofarandomvariablefromitsexpectedvalue.Whenarandomvariableissubjecttoalineartransformation,itsvarianceandstandarddeviationwillbechangedinafairlyobviousway.Ify¼axþb,thenσ2y¼∫þ∞∞½axþbEðaxþbÞ2fðxÞdx¼∫þ∞∞a2½xEðxÞ2fðxÞdx¼a2σ2x:(2.187)Hence,additionofaconstanttoarandomvariabledoesnotchangeitsvariance,whereasmultiplicationbyaconstantmultipliesthevariancebythesquareoftheconstant.Itisclearthereforethatmultiplyingavariablebyaconstantmultipliesitsstandarddeviationbythatconstant:σax¼aσx.70Part1Introduction
EXAMPLE2.15VariancesandStandardDeviationsforSimpleRandomVariablesKnowingthevariancesandstandarddeviationsofthefoursimplerandomvariableswehavebeenlookingatcansometimesbequiteusefulineconomicapplications.1.Binomial.Thevarianceofthebinomialcanbecalculatedbyapplyingthedefinitioninitsdiscreteanalog:σ2x¼Xni¼1ðxiEðxÞÞ2fðxiÞ¼ð1pÞ2⋅pþð0pÞ2ð1pÞ¼ð1pÞðpp2þp2Þ¼pð1pÞ:(2:188)Hence,σx¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffipð1pÞp.Oneimplicationofthisresultisthatabinomialvariablehasthelargestvarianceandstandarddeviationwhenp¼0:5,inwhichcaseσ2x¼0:25andσx¼0:5.Becauseoftherelativelyflatparabolicshapeofpð1pÞ,modestdeviationsofpfrom0.5donotchangethisvariancesubstantially.2.Uniform.Calculatingthevarianceoftheuniformdistributionyieldsamildlyinterest-ingresult:σ2x¼∫baxaþb221badx¼xaþb2313ðbaÞba¼13ðbaÞðbaÞ38ðabÞ38"#¼ðbaÞ212:(2:189)Thisisoneofthefewplaceswherethenumber12hasanyuseinmathematicsotherthaninmeasuringquantitiesoforangesordoughnuts.3.Exponential.Integratingthevarianceformulafortheexponentialisrelativelylaborious.Fortunately,theresultisquitesimple;fortheexponential,itturnsoutthatσ2x¼1=λ2andσx¼1=λ.Hence,themeanandstandarddeviationarethesamefortheexponentialdistribu-tion—itisa“one-parameterdistribution.”4.Normal.Inthiscasealso,theintegrationcanbeburdensome.Butagaintheresultissimple:fortheNormaldistribution,σ2x¼σx¼1.AreasbelowtheNormalcurvecanbereadilycalculatedandtablesoftheseareavailableinanystatisticstext.TwousefulfactsabouttheNormalPDFare:∫þ11fðxÞdx0:68and∫þ22fðxÞdx0:95:(2.190)Thatis,theprobabilityisabouttwothirdsthataNormalvariablewillbewithin1standarddeviationoftheexpectedvalueand“mostofthetime”(i.e.,withprobability0.95)itwillbewithin2standarddeviations.StandardizingtheNormal.IftherandomvariablexhasastandardNormalPDF,itwillhaveanexpectedvalueof0andastandarddeviationof1.However,asimplelineartransformationcanbeusedtogivethisrandomvariableanydesiredexpectedvalue(μ)andstandarddeviation(σ).Considerthetransformationy¼σxþμ.NowEðyÞ¼σEðxÞþμ¼μandVarðyÞ¼σ2y¼σ2VarðxÞ¼σ2:(2.191)Reversingthisprocesscanbeusedto“standardize”anyNormallydistributedrandomvariable(y)withanarbitraryexpectedvalue(μ)andstandarddeviation(σ)(thisissometimesdenoted(continued)Chapter2MathematicsforMicroeconomics71
EXAMPLE2.15CONTINUEDasy∼Nðμ,σÞ)byusingz¼ðyμÞ=σ.Forexample,SATscores(y)aredistributedNormallywithanexpectedvalueof500pointsandastandarddeviationof100points(thatis,y∼Nð500,100Þ).Hence,z¼ðy500Þ=100hasastandardNormaldistributionwithexpectedvalue0andstandarddeviation1.Equation2.190showsthatapproximately68percentofallscoresliebetween400and600pointsand95percentofallscoresliebetween300and700points.QUERY:Supposethattherandomvariablexisdistributeduniformlyalongtheinterval[0,12].Whatarethemeanandstandarddeviationofx?Whatfractionofthexdistributioniswithin1standarddeviationofthemean?Whatfractionofthedistributioniswithin2standarddeviationsoftheexpectedvalue?Explainwhythisdiffersfromthefractionscom-putedfortheNormaldistribution.CovarianceSomeeconomicproblemsinvolvetwoormorerandomvariables.Forexample,aninvestormayconsiderallocatinghisorherwealthamongseveralassetsthereturnsonwhicharetakentoberandom.Althoughtheconceptsofexpectedvalue,variance,andsoforthcarryovermoreorlessdirectlywhenlookingatasinglerandomvariableinsuchcases,itisalsonecessarytoconsidertherelationshipbetweenthevariablestogetacompletepicture.Theconceptofcovarianceisusedtoquantifythisrelationship.Beforeprovidingadefinition,however,wewillneedtodevelopsomebackground.Consideracasewithtwocontinuousrandomvariables,xandy.Theprobabilitydensityfunctionforthesetwovariables,denotedbyfðx,yÞ,hasthepropertythattheprobabilityassociatedwithasetofoutcomesinasmallarea(withdimensionsdxdy)isgivenbyfðx,yÞdxdy.TobeaproperPDF,itmustbethecasethat:fðx,yÞ0and∫þ∞∞∫þ∞∞fðx,yÞdxdy¼1:(2.192)Thesingle-variablemeasureswehavealreadyintroducedcanbedevelopedinthistwo-variablecontextby“integratingout”theothervariable.Thatis,EðxÞ¼∫þ∞∞∫þ∞∞xfðx,yÞdydxandVarðxÞ¼∫þ∞∞∫þ∞∞½xEðxÞ2fðx,yÞdydx:(2.193)Inthisway,theparametersdescribingtherandomvariablexaremeasuredoverallpossibleoutcomesforyaftertakingintoaccountthelikelihoodofthosevariousoutcomes.Inthiscontext,thecovariancebetweenxandyseekstomeasurethedirectionofassociationbetweenthevariables.Specificallythecovariancebetweenxandy[denotedasCovðx,yÞ]isdefinedasCovðx,yÞ¼∫þ∞∞∫þ∞∞xEðxÞyEðyÞfðx,yÞdxdy:(2.194)72Part1Introduction
Thecovariancebetweentworandomvariablesmaybepositive,negative,orzero.IfvaluesofxthataregreaterthanEðxÞtendtooccurrelativelyfrequentlywithvaluesofythataregreaterthanEðyÞ(andsimilarly,iflowvaluesofxtendtooccurtogetherwithlowvaluesofy),thenthecovariancewillbepositive.Inthiscase,valuesofxandytendtomoveinthesamedirection.Alternatively,ifhighvaluesofxtendtobeassociatedwithlowvaluesfory(andviceversa),thecovariancewillbenegative.Tworandomvariablesaredefinedtobeindependentiftheprobabilityofanyparticularvalueof,say,xisnotaffectedbytheparticularvalueofythatmightoccur(andviceversa).24Inmathematicalterms,thismeansthatthePDFmusthavethepropertythatfðx,yÞ¼gðxÞhðyÞ—thatis,thejointprobabilitydensityfunctioncanbeexpressedastheproductoftwosingle-variablePDFs.Ifxandyareindependent,theircovariancewillbezero:Covðx,yÞ¼∫þ∞∞∫þ∞∞½xEðxÞ½yEðyÞgðxÞhðyÞdxdy¼∫þ∞∞½xEðxÞgðxÞdx⋅∫þ∞∞½yEðyÞhðyÞdy¼0⋅0¼0:(2.195)Theconverseofthisstatementisnotnecessarilytrue,however.Azerocovariancedoesnotnecessarilyimplystatisticalindependence.Finally,thecovarianceconceptiscrucialforunderstandingthevarianceofsumsordifferencesofrandomvariables.Althoughtheexpectedvalueofasumoftworandomvariablesis(asonemightguess)thesumoftheirexpectedvalues:EðxþyÞ¼∫þ∞∞∫þ∞∞ðxþyÞfðx,yÞdxdy¼∫þ∞∞xfðx,yÞdydxþ∫þ∞∞yfðx,yÞdxdy¼EðxÞþEðyÞ,(2.196)therelationshipforthevarianceofsuchasumismorecomplicated.UsingthedefinitionswehavedevelopedyieldsVarðxþyÞ¼∫þ∞∞∫þ∞∞½xþyEðxþyÞ2fðx,yÞdxdy¼∫þ∞∞∫þ∞∞½xEðxÞþyEðyÞ2fðx,yÞdxdy¼∫þ∞∞∫þ∞∞½xEðxÞ2þ½yEðyÞ2þ2½xEðxÞ½yEðyÞfðx,yÞdxdy¼VarðxÞþVarðyÞþ2Covðx,yÞ:(2.197)Hence,ifxandyareindependentthenVarðxþyÞ¼VarðxÞþVarðyÞ.Thevarianceofthesumwillbegreaterthanthesumofthevariancesifthetworandomvariableshaveapositivecovarianceandwillbelessthanthesumofthevariancesiftheyhaveanegativecovariance.Problems2.13and2.14providefurtherdetailsonstatisticalissuesthatariseinmicroeconomictheory.24Aformaldefinitionreliesontheconceptofconditionalprobability.TheconditionalprobabilityofaneventBgiventhatAhasoccurred(writtenPðBjAÞisdefinedasPðBjAÞ¼PðAandBÞ=PðAÞ;BandAaredefinedtobeindependentifPðBjAÞ¼PðBÞ.Inthiscase,PðAandBÞ¼PðAÞ⋅PðBÞ.Chapter2MathematicsforMicroeconomics73
SUMMARYDespitetheformidableappearanceofsomepartsofthischapter,thisisnotabookonmathematics.Rather,theintentionherewastogathertogetheravarietyoftoolsthatwillbeusedtodevelopeconomicmodelsthroughouttheremainderofthetext.Materialinthischapterwillthenbeusefulasahandyreference.Onewaytosummarizethemathematicaltoolsintro-ducedinthischapterisbystressingagaintheeconomiclessonsthatthesetoolsillustrate:•Usingmathematicsprovidesaconvenient,shorthandwayforeconomiststodeveloptheirmodels.Implica-tionsofvariouseconomicassumptionscanbestudiedinasimplifiedsettingthroughtheuseofsuchmathe-maticaltools.•Themathematicalconceptofthederivativesofafunc-tioniswidelyusedineconomicmodelsbecauseecono-mistsareofteninterestedinhowmarginalchangesinonevariableaffectanothervariable.Partialderivativesareespeciallyusefulforthispurposebecausetheyaredefinedtorepresentsuchmarginalchangeswhenallotherfactorsareheldconstant.•Themathematicsofoptimizationisanimportanttoolforthedevelopmentofmodelsthatassumethateconomicagentsrationallypursuesomegoal.Intheunconstrainedcase,thefirst-orderconditionsstatethatanyactivitythatcontributestotheagent’sgoalshouldbeexpandeduptothepointatwhichthemarginalcontributionoffurtherexpansioniszero.Inmathematicalterms,thefirst-orderconditionforanoptimumrequiresthatallpartialderiva-tivesbezero.•Mosteconomicoptimizationproblemsinvolveconstraintsonthechoicesagentscanmake.Inthiscasethefirst-orderconditionsforamaximumsuggestthateachactivitybeoperatedatalevelatwhichtheratioofthemarginalbenefit–oftheactivitytoitsmarginalcostisthesameforallactivitiesactuallyused.Thiscommonmarginalbenefit–marginalcostratioisalsoequaltotheLagrangianmulti-plier,whichisoftenintroducedtohelpsolveconstrainedoptimizationproblems.TheLagrangianmultipliercanalsobeinterpretedastheimplicitvalue(orshadowprice)oftheconstraint.•Theimplicitfunctiontheoremisausefulmathematicaldeviceforillustratingthedependenceofthechoicesthatresultfromanoptimizationproblemontheparametersofthatproblem(forexample,marketprices).Theenve-lopetheoremisusefulforexamininghowtheseoptimalchoiceschangewhentheproblem’sparameters(prices)change.•Someoptimizationproblemsmayinvolveconstraintsthatareinequalitiesratherthanequalities.Solutionstotheseproblemsoftenillustrate“complementaryslackness.”Thatis,eithertheconstraintsholdwithequalityandtheirrelatedLagrangianmultipliersarenonzero,ortheconstraintsarestrictinequalitiesandtheirrelatedLagrang-ianmultipliersarezero.AgainthisillustrateshowtheLagrangianmultiplierimpliessomethingaboutthe“im-portance”ofconstraints.•Thefirst-orderconditionsshowninthischapterareonlythenecessaryconditionsforalocalmaximumormini-mum.Onemustalsochecksecond-orderconditionsthatrequirethatcertaincurvatureconditionsbemet.•Certaintypesoffunctionsoccurinmanyeconomicprob-lems.Quasi-concavefunctions(thosefunctionsforwhichthelevelcurvesformconvexsets)obeythesecond-orderconditionsofconstrainedmaximumorminimumproblemswhentheconstraintsarelinear.Homotheticfunctionshavetheusefulpropertythatimplicittrade-offsamongthevariablesofthefunctiondependonlyontheratiosofthesevariables.•Integralcalculusisoftenusedineconomicsbothasawayofdescribingareasbelowgraphsandasawayofsum-mingresultsovertime.Techniquesthatinvolvevariouswaysofdifferentiatingintegralsplayanimportantroleinthetheoryofoptimizingbehavior.•Manyeconomicproblemsaredynamicinthatdecisionsatonedateaffectdecisionsandoutcomesatlaterdates.ThemathematicsforsolvingsuchdynamicoptimizationproblemsisoftenastraightforwardgeneralizationofLagrangianmethods.•Conceptsfrommathematicalstatisticsareoftenusedinstudyingtheeconomicsofuncertaintyandinformation.Themostfundamentalconceptisthenotionofaran-domvariableanditsassociatedprobabilitydensityfunc-tion.Parametersofthisdistribution,suchasitsexpectedvalueoritsvariance,alsoplayimportantrolesinmanyeconomicmodels.74Part1Introduction
PROBLEMS2.1SupposeUðx,yÞ¼4x2þ3y2.a.Calculate∂U=∂x,∂U=∂y.b.Evaluatethesepartialderivativesatx¼1,y¼2.c.WritethetotaldifferentialforU.d.Calculatedy=dxfordU¼0—thatis,whatistheimpliedtrade-offbetweenxandyholdingUconstant?e.ShowU¼16whenx¼1,y¼2.f.InwhatratiomustxandychangetoholdUconstantat16formovementsawayfromx¼1,y¼2?g.Moregenerally,whatistheshapeoftheU¼16contourlineforthisfunction?Whatistheslopeofthatline?2.2Supposeafirm’stotalrevenuesdependontheamountproducedðqÞaccordingtothefunctionR¼70qq2:Totalcostsalsodependonq:C¼q2þ30qþ100:a.Whatlevelofoutputshouldthefirmproduceinordertomaximizeprofits(RC)?Whatwillprofitsbe?b.Showthatthesecond-orderconditionsforamaximumaresatisfiedattheoutputlevelfoundinpart(a).c.Doesthesolutioncalculatedhereobeythe“marginalrevenueequalsmarginalcost”rule?Explain.2.3Supposethatfðx,yÞ¼xy.Findthemaximumvalueforfifxandyareconstrainedtosumto1.Solvethisproblemintwoways:bysubstitutionandbyusingtheLagrangianmultipliermethod.2.4ThedualproblemtotheonedescribedinProblem2.3isminimizexþysubjecttoxy¼0:25:SolvethisproblemusingtheLagrangiantechnique.ThencomparethevalueyougetfortheLagrangianmultipliertothevalueyougotinProblem2.3.Explaintherelationshipbetweenthetwosolutions.2.5Theheightofaballthatisthrownstraightupwithacertainforceisafunctionofthetime(t)fromwhichitisreleasedgivenbyfðtÞ¼0:5gt2þ40t(wheregisaconstantdeterminedbygravity).Chapter2MathematicsforMicroeconomics75
a.Howdoesthevalueoftatwhichtheheightoftheballisatamaximumdependontheparameterg?b.Useyouranswertopart(a)todescribehowmaximumheightchangesastheparametergchanges.c.Usetheenvelopetheoremtoanswerpart(b)directly.d.OntheEarthg¼32,butthisvaluevariessomewhataroundtheglobe.Iftwolocationshadgravitationalconstantsthatdifferedby0.1,whatwouldbethedifferenceinthemaximumheightofaballtossedinthetwoplaces?2.6Asimplewaytomodeltheconstructionofanoiltankeristostartwithalargerectangularsheetofsteelthatisxfeetwideand3xfeetlong.Nowcutasmallersquarethatistfeetonasideoutofeachcornerofthelargersheetandfoldupandweldthesidesofthesteelsheettomakeatraylikestructurewithnotop.a.ShowthatthevolumeofoilthatcanbeheldbythistrayisgivenbyV¼tðx2tÞð3x2tÞ¼3tx28t2xþ4t3:b.HowshouldtbechosensoastomaximizeVforanygivenvalueofx?c.Isthereavalueofxthatmaximizesthevolumeofoilthatcanbecarried?d.Supposethatashipbuilderisconstrainedtouseonly1,000,000squarefeetofsteelsheettoconstructanoiltanker.Thisconstraintcanberepresentedbytheequation3x24t2¼1,000,000(becausethebuildercanreturnthecut-outsquaresforcredit).Howdoesthesolutiontothisconstrainedmaximumproblemcomparetothesolutionsdescribedinparts(b)and(c)?2.7Considerthefollowingconstrainedmaximizationproblem:maximizey¼x1þ5lnx2subjecttokx1x2¼0,wherekisaconstantthatcanbeassignedanyspecificvalue.a.Showthatifk¼10,thisproblemcanbesolvedasoneinvolvingonlyequalityconstraints.b.Showthatsolvingthisproblemfork¼4requiresthatx1¼1.c.Ifthex’sinthisproblemmustbenonnegative,whatistheoptimalsolutionwhenk¼4?d.Whatisthesolutionforthisproblemwhenk¼20?Whatdoyouconcludebycomparingthissolutiontothesolutionforpart(a)?Note:Thisprobleminvolveswhatiscalleda“quasi-linearfunction.”Suchfunctionsprovideimportantexamplesofsometypesofbehaviorinconsumertheory—asweshallsee.2.8SupposethatafirmhasamarginalcostfunctiongivenbyMCðqÞ¼qþ1.a.Whatisthisfirm’stotalcostfunction?Explainwhytotalcostsareknownonlyuptoaconstantofintegration,whichrepresentsfixedcosts.b.Asyoumayknowfromanearliereconomicscourse,ifafirmtakesprice(p)asgiveninitsdecisionsthenitwillproducethatoutputforwhichp¼MCðqÞ.Ifthefirmfollowsthisprofit-maximizingrule,howmuchwillitproducewhenp¼15?Assumingthatthefirmisjustbreakingevenatthisprice,whatarefixedcosts?76Part1Introduction
c.Howmuchwillprofitsforthisfirmincreaseifpriceincreasesto20?d.Showthat,ifwecontinuetoassumeprofitmaximization,thenthisfirm’sprofitscanbeexpressedsolelyasafunctionofthepriceitreceivesforitsoutput.e.Showthattheincreaseinprofitsfromp¼15top¼20canbecalculatedintwoways:(i)directlyfromtheequationderivedinpart(d);and(ii)byintegratingtheinversemarginalcostfunction½MC1ðpÞ¼p1fromp¼15top¼20.Explainthisresultintuitivelyusingtheenvelopetheorem.AnalyticalProblems2.9Concaveandquasi-concavefunctionsShowthatiffðx1,x2Þisaconcavefunctionthenitisalsoaquasi-concavefunction.DothisbycomparingEquation2.114(definingquasi-concavity)toEquation2.98(definingconcavity).Canyougiveanintuitivereasonforthisresult?Istheconverseofthestatementtrue?Arequasi-concavefunctionsnecessarilyconcave?Ifnot,giveacounterexample.2.10TheCobb-DouglasfunctionOneofthemostimportantfunctionswewillencounterinthisbookistheCobb-Douglasfunction:y¼ðx1Þαðx2Þβ,whereαandβarepositiveconstantsthatareeachlessthan1.a.Showthatthisfunctionisquasi-concaveusinga“bruteforce”methodbyapplyingEqua-tion2.114.b.ShowthattheCobb-Douglasfunctionisquasi-concavebyshowingthatanycontourlineoftheformy¼c(wherecisanypositiveconstant)isconvexandthereforethatthesetofpointsforwhichy>cisaconvexset.c.Showthatifαþβ>1thentheCobb-Douglasfunctionisnotconcave(therebyillustratingagainthatnotallquasi-concavefunctionsareconcave).Note:TheCobb-DouglasfunctionisdiscussedfurtherintheExtensionstothischapter.2.11ThepowerfunctionAnotherfunctionwewillencounterofteninthisbookisthe“powerfunction”:y¼xδ,where0δ1(attimeswewillalsoexaminethisfunctionforcaseswhereδcanbenegative,too,inwhichcasewewillusetheformy¼xδ=δtoensurethatthederivativeshavethepropersign).a.Showthatthisfunctionisconcave(andthereforealso,bytheresultofProblem2.9,quasi-concave).Noticethattheδ¼1isaspecialcaseandthatthefunctionis“strictly”concaveonlyforδ<1.b.Showthatthemultivariateformofthepowerfunctiony¼fðx1,x2Þ¼ðx1Þδþðx2Þδisalsoconcave(andquasi-concave).Explainwhy,inthiscase,thefactthatf12¼f21¼0makesthedeterminationofconcavityespeciallysimple.c.Onewaytoincorporate“scale”effectsintothefunctiondescribedinpart(b)istousethemonotonictransformationgðx1,x2Þ¼yγ¼½ðx1Þδþðx2Þδγ,whereγisapositiveconstant.Doesthistransformationpreservetheconcavityofthefunction?Isgquasi-concave?Chapter2MathematicsforMicroeconomics77
2.12TaylorapproximationsTaylor’stheoremshowsthatanyfunctioncanbeapproximatedinthevicinityofanyconvenientpointbyaseriesoftermsinvolvingthefunctionanditsderivatives.Herewelookatsomeapplicationsofthetheoremforfunctionsofoneandtwovariables.a.Anycontinuousanddifferentiablefunctionofasinglevariable,fðxÞ,canbeapproximatednearthepointabytheformulafðxÞ¼fðaÞþf0ðaÞðxaÞþ0:5f00ðaÞðxaÞ2þtermsinf000,f0000,…:UsingonlythefirstthreeofthesetermsresultsinaquadraticTaylorapproximation.UsethisapproximationtogetherwiththedefinitionofconcavitygiveninEquation2.85toshowthatanyconcavefunctionmustlieonorbelowthetangenttothefunctionatpointa.b.ThequadraticTaylorapproximationforanyfunctionoftwovariables,fðx,yÞ,nearthepointða,bÞisgivenbyfðx,yÞ¼fða,bÞþf1ða,bÞðxaÞþf2ða,bÞðybÞþ0:5½f11ða,bÞðxaÞ2þ2f12ða,bÞðxaÞðybÞþf22ðybÞ2:Usethisapproximationtoshowthatanyconcavefunction(asdefinedbyEquation2.98)mustlieonorbelowitstangentplaneat(a,b).2.13MoreonexpectedvalueBecausetheexpectedvalueconceptplaysanimportantroleinmanyeconomictheories,itmaybeusefultosummarizeafewmorepropertiesofthisstatisticalmeasure.Throughoutthisproblem,xisassumedtobeacontinuousrandomvariablewithprobabilitydensityfunctionfðxÞ.a.(Jensen’sinequality)SupposethatgðxÞisaconcavefunction.ShowthatE½gðxÞg½EðxÞ.Hint:ConstructthetangenttogðxÞatthepointEðxÞ.ThistangentwillhavetheformcþdxgðxÞforallvaluesofxandcþdEðxÞ¼g½EðxÞwherecanddareconstants.b.Usetheprocedurefrompart(a)toshowthatifgðxÞisaconvexfunctionthenE½gðxÞg½EðxÞ.c.Supposextakesononlynonnegativevalues—thatis,0x∞.UseintegrationbypartstoshowthatEðxÞ¼∫∞0½1FðxÞdx,whereFðxÞisthecumulativedistributionfunctionforx[thatis,FðxÞ¼∫x0fðtÞdt].d.(Markov’sinequality)Showthatifxtakesononlypositivevaluesthenthefollowinginequalityholds:PðxtÞEðxÞt:Hint:EðxÞ¼∫∞0xfðxÞdx¼∫t0xfðxÞdxþ∫∞txfðxÞdx:e.ConsidertheprobabilitydensityfunctionfðxÞ¼2x3forx1.(1)ShowthatthisisaproperPDF.(2)CalculateFðxÞforthisPDF.(3)Usetheresultsofpart(c)tocalculateEðxÞforthisPDF.(4)ShowthatMarkov’sinequalityholdsforthisfunction.f.Theconceptofconditionalexpectedvalueisusefulinsomeeconomicproblems.Wedenotetheexpectedvalueofxconditionalontheoccurrenceofsomeevent,A,asEðxjAÞ.TocomputethisvalueweneedtoknowthePDFforxgiventhatAhasoccurred[denotedbyfðxjAÞ].Withthis78Part1Introduction
notation,EðxjAÞ¼∫þ∞∞xfðxjAÞdx.Perhapstheeasiestwaytounderstandtheserelationshipsiswithanexample.LetfðxÞ¼x23for1x2:(1)ShowthatthisisaproperPDF.(2)CalculateEðxÞ.(3)Calculatetheprobabilitythat1x0.(4)Considertheevent0x2,andcallthiseventA.WhatisfðxjAÞ?(5)CalculateEðxjAÞ.(6)Explainyourresultsintuitively.2.14MoreonvariancesandcovariancesThisproblempresentsafewusefulmathematicalfactsaboutvariancesandcovariances.a.ShowthatVarðxÞ¼Eðx2Þ½EðxÞ2.b.Showthattheresultinpart(a)canbegeneralizedasCovðx,yÞ¼EðxyÞEðxÞEðyÞ.Note:IfCovðx,yÞ¼0,thenEðxyÞ¼EðxÞEðyÞ.c.ShowthatVarðaxbyÞ¼a2VarðxÞþb2VarðyÞ2abCovðx,yÞ.d.Assumethattwoindependentrandomvariables,xandy,arecharacterizedbyEðxÞ¼EðyÞandVarðxÞ¼VarðyÞ.ShowthatEð0:5xþ0:5yÞ¼EðxÞ.Thenusepart(c)toshowthatVarð0:5xþ0:5yÞ¼0:5VarðxÞ.Describewhythisfactprovidestherationalefordiversificationofassets.SUGGESTIONSFORFURTHERREADINGDadkhan,Kamran.FoundationsofMathematicalandComputationalEconomics.Mason,OH:Thomson/South-Western,2007.Thisisagoodintroductiontomanycalculustechniques.ThebookshowshowmanymathematicalquestionscanbeapproachedusingpopularsoftwareprogramssuchasMatlaborExcel.Dixit,A.K.OptimizationinEconomicTheory,2nded.NewYork:OxfordUniversityPress,1990.Acompleteandmoderntreatmentofoptimizationtechniques.Usesrelativelyadvancedanalyticalmethods.Hoy,Michael,JohnLivernois,ChrisMcKenna,RayRees,andThanasisStengos.MathematicsforEconomists,2nded.Cambridge,MA:MITPress,2001.Acompleteintroductiontomostofthemathematicscoveredinmicroeconomicscourses.Thestrengthofthebookisitspresentationofmanyworked-outexamples,mostofwhicharebasedonmicro-economictheory.Mas-Colell,Andreu,MichaelD.Whinston,andJerryR.Green.MicroeconomicTheory.NewYork:OxfordUniversityPress,1995.Encyclopedictreatmentofmathematicalmicroeconomics.Extensivemathematicalappendicescoverrelativelyhigh-leveltopicsinanalysis.Samuelson,PaulA.FoundationsofEconomicAnalysis.Cambridge,MA:HarvardUniversityPress,1947.Mathe-maticalAppendixA.Abasicreference.MathematicalAppendixAprovidesanadvancedtreatmentofnecessaryandsufficientconditionsforamaximum.Silberberg,E.,andW.Suen.TheStructureofEconomics:AMathematicalAnalysis,3rded.Boston:Irwin/McGraw-Hill,2001.Amathematicalmicroeconomicstextthatstressestheobservablepredictionsofeconomictheory.Thetextmakesextensiveuseoftheenvelopetheorem.Simon,CarlP.,andLawrenceBlume.MathematicsforEconomists.NewYork:W.W.Norton,1994.Averyusefultextcoveringmostareasofmathematicsrelevanttoeconomists.Treatmentisatarelativelyhighlevel.Twotopicsdis-cussedbetterherethanelsewherearedifferentialequationsandbasicpoint-settopology.Sydsaeter,K.,A.Strom,andP.Berck.Economists’MathematicalManual,3rded.Berlin:Springer-Verlag,2000.Anindispensabletoolformathematicalreview.Contains32chapterscoveringmostofthemathematicaltoolsthateconomistsuse.Chapter2MathematicsforMicroeconomics79
Discussionsareverybrief,sothisisnottheplacetoencounternewconceptsforthefirsttime.Taylor,AngusE.,andW.RobertMann.AdvancedCalculus,3rded.NewYork:JohnWiley,1983,pp.183–95.AcomprehensivecalculustextwithagooddiscussionoftheLagrang-iantechnique.Thomas,GeorgeB.,andRossL.Finney.CalculusandAnalyticGeometry,8thed.Reading,MA:Addison-Wesley,1992.Basiccalculustextwithexcellentcoverageofdifferentiationtechniques.80Part1Introduction
EXTENSIONSSecond-OrderConditionsandMatrixAlgebraThesecond-orderconditionsdescribedinChapter2canbewritteninverycompactwaysbyusingmatrixalgebra.Inthisextension,welookbrieflyatthatnota-tion.Wereturntothisnotationatafewotherplacesintheextensionsandproblemsforlaterchapters.MatrixalgebrabackgroundTheextensionspresentedhereassumesomegeneralfamiliaritywithmatrixalgebra.Asuccinctreminderoftheseprinciplesmightinclude:1.Annkmatrix,A,isarectangulararrayoftermsoftheformA¼aijhi¼a11a12…a1ka21a22…a2k...an1an2…ank2666437775:Herei¼1,n;j¼1,k.Matricescanbeadded,subtracted,ormultipliedprovidingtheirdimen-sionsareconformable.2.Ifn¼k,thenAisasquarematrix.Asquarematrixissymmetricifaij¼aji.Theidentityma-trix,In,isannþnsquarematrixwhereaij¼1ifi¼jandaij¼0ifi6¼j.3.Thedeterminantofasquarematrix(denotedbyjAj)isascalar(i.e.,asingleterm)foundbysuitablymultiplyingtogetherallofthetermsinthematrix.IfAis22,jAj¼a11a22a21a12:Example:IfA¼1352thenjAj¼215¼13:4.Theinverseofannnsquarematrix,A,isanothernnmatrix,A1,suchthatAA1¼In:Noteverysquarematrixhasaninverse.AnecessaryandsufficientconditionfortheexistenceofA1isthatjAj6¼0.5.TheleadingprincipalminorsofannnsquarematrixAaretheseriesofdeterminantsofthefirstprowsandcolumnsofA,wherep¼1,n.IfAis22,thenthefirstleadingprincipalminorisa11andthesecondisa11a22a21a12.6.Annnsquarematrix,A,ispositivedefiniteifallofitsleadingprincipalminorsarepositive.Thematrixisnegativedefiniteifitsprincipalminorsalternateinsignstartingwithaminus.17.AparticularlyusefulsymmetricmatrixistheHessianmatrixformedbyallofthesecond-orderpartialderivativesofafunction.Iffisacontinuousandtwicedifferentiablefunctionofnvariables,thenitsHessianisgivenbyHðfÞ¼f11f12…f1nf21f22…f2n...fn1fn2…fnn2666437775:Usingthesenotationalideas,wecannowexam-ineagainsomeofthesecond-orderconditionsderivedinChapter2.E2.1ConcaveandconvexfunctionsAconcavefunctionisonethatisalwaysbelow(oron)anytangenttoit.Alternatively,aconvexfunctionisalwaysabove(oron)anytangent.Theconcavityorconvexityofanyfunctionisdeterminedbyitssecondderivative(s).Forafunctionofasinglevariable,fðxÞ,therequirementisstraightforward.UsingtheTaylorapproximationatanypoint(x0)fðx0þdxÞ¼fðx0Þþf0ðx0Þdxþf00ðx0Þdx22þhigher-orderterms:Assumingthatthehigher-ordertermsare0,wehavefðx0þdxÞfðx0Þþf0ðx0Þdxiff00ðx0Þ0andfðx0þdxÞfðx0Þþf0ðx0Þdxiff00ðx0Þ0.Becausetheexpressionsontherightoftheseinequalitiesareinfacttheequationofthetangenttothefunctionatx0,itisclearthatthe1Ifsomeofthedeterminantsinthisdefinitionare0thenthematrixissaidtobepositivesemidefiniteornegativesemidefinite.Chapter2MathematicsforMicroeconomics81
functionis(locally)concaveiff00ðx0Þ0and(locally)convexiff00ðx0Þ0.Extendingthisintuitiveideatomanydimensionsiscumbersomeintermsoffunctionalnotation,butrela-tivelysimplewhenmatrixalgebraisused.ConcavityrequiresthattheHessianmatrixbenegativedefinitewhereasconvexityrequiresthatthismatrixbepositivedefinite.Asinthesinglevariablecase,theseconditionsamounttorequiringthatthefunctionmoveconsis-tentlyawayfromanytangenttoitnomatterwhatdirectionistaken.2Iffðx1,x2Þisafunctionoftwovariables,theHes-sianisgivenbyH¼f11f12f21f22:Thisisnegativedefiniteiff11<0andf11f22f21f12>0,whichispreciselytheconditiondescribedinEqua-tion2.98.Generalizationstofunctionsofthreeormorevariablesfollowthesamematrixpattern.Example1ForthehealthstatusfunctioninChapter2(Equa-tion2.20),theHessianisgivenbyH¼2002,andthefirstandsecondleadingprincipalminorsareH1¼2<0andH2¼ð2Þð2Þ0¼4>0:Hence,thefunctionisconcave.Example2TheCobb-Douglasfunctionxaybwherea,b2ð0,1Þisusedtoillustrateutilityfunctionsandproductionfunctionsinmanyplacesinthistext.Thefirst-andsecond-orderderivativesofthefunctionarefx¼axa1yb,fy¼bxayb1,fxx¼aða1Þxa2yb,fyy¼bðb1Þxayb2:Hence,theHessianforthisfunctionisH¼aða1Þxa2ybabxa1yb1abxa1yb1bðb1Þxayb2:ThefirstleadingprincipalminorofthisHessianisH1¼aða1Þxa2yb<0andsothefunctionwillbeconcave,providingH2¼aða1ÞðbÞðb1Þx2a2y2b2a2b2x2a2y2b2¼abð1abÞx2a2y2b2>0:Thisconditionclearlyholdsifaþb<1.Thatis,inproductionfunctionterminology,thefunctionmustexhibitdiminishingreturnstoscaletobeconcave.Geometrically,thefunctionmustturndownwardasbothinputsareincreasedtogether.E2.2MaximizationAswesawinChapter2,thefirst-orderconditionsforanunconstrainedmaximumofafunctionofmanyvariablesrequiresfindingapointatwhichthepartialderivativesarezero.Ifthefunctionisconcaveitwillbebelowitstangentplaneatthispointandthereforethepointwillbeatruemaximum.3Becausethehealthstatusfunctionisconcave,forexample,thefirst-orderconditionsforamaximumarealsosufficient.E2.3ConstrainedmaximaWhenthex’sinamaximizationorminimizationprob-lemaresubjecttoconstraints,theseconstraintshavetobetakenintoaccountinstatingsecond-ordercondi-tions.Again,matrixalgebraprovidesacompact(ifnotveryintuitive)wayofdenotingtheseconditions.ThenotationinvolvesaddingrowsandcolumnsoftheHessianmatrixfortheunconstrainedproblemandthencheckingthepropertiesofthisaugmentedmatrix.Specifically,wewishtomaximizefðx1,…,xnÞsubjecttotheconstraint4gðx1,…,xnÞ¼0:2AproofusingthemultivariableversionofTaylor’sapproximationisprovidedinSimonandBlume(1994),chap.21.3Thiswillbea“local”maximumifthefunctionisconcaveonlyinaregion,or“global”ifthefunctionisconcaveeverywhere.4Herewelookonlyatthecaseofasingleconstraint.Generalizationtomanyconstraintsisconceptuallystraightforwardbutnotationallycom-plex.ForaconcisestatementseeSydsaeter,Strom,andBerck(2000),p.93.82Part1Introduction
WesawinChapter2thatthefirst-orderconditionsforamaximumareoftheformfiþλgi¼0,whereλistheLagrangianmultiplierforthisproblem.Second-orderconditionsforamaximumarebasedontheaugmented(“bordered”)Hessian5Hb¼0g1g2…gng1f11f12f1ng2f21f22f2n...gnfn1fn2…fnn26666643777775:Foramaximum,(1)Hbmustbenegativedefinite—thatis,theleadingprincipalminorsofHbmustfollowthepattern++andsoforth,startingwiththesecondsuchminor.6Thesecond-orderconditionsforminimumrequirethat(1)Hbbepositivedefinite—thatis,allofthelead-ingprincipalminorsofHb(exceptthefirst)shouldbenegative.ExampleTheLagrangianfortheconstrainedhealthstatusprob-lem(Example2.6)isℒ¼x21þ2x1x22þ4x2þ5þλð1x1x2Þ,andtheborderedHessianforthisproblemisHb¼0111201022435:ThesecondleadingprincipalminorhereisHb2¼0112¼1,andthethirdisHb3¼011120102264375¼0þ0þ0ð2Þ0ð2Þ¼4,sotheleadingprincipalminorsoftheHbhavetherequiredpatternandthepointx2¼1,x1¼0,isaconstrainedmaximum.ExampleIntheoptimalfenceproblem(Example2.7),thebor-deredHessianisHb¼0222012102435andHb2¼4,Hb3¼8,soagaintheleadingprincipalminorshavethesignpatternrequiredforamaximum.E2.4Quasi-concavityIftheconstraintgislinear,thenthesecond-orderconditionsexploredinExtension2.3canberelatedsolelytotheshapeofthefunctiontobeoptimized,f.Inthiscasetheconstraintcanbewrittenasgðx1,…,xnÞ¼cb1x1b2x2…bnxn¼0,andthefirst-orderconditionsforamaximumarefi¼λbi,i¼1,…,n:Usingtheconditions,itisclearthattheborderedHessianHbandthematrixH0¼0f1f2…fnf1f11f12f1nf2f21f22f2nfnfn1fn2…fnn26643775havethesameleadingprincipalminorsexceptfora(positive)constantofproportionality.7Thecondi-tionsforamaximumoffsubjecttoalinearconstraintwillbesatisfiedprovidedH0followsthesamesignconventionsasHb—thatis,(1)H0mustbenegativedefinite.AfunctionfforwhichH0doesfollowthispatterniscalledquasi-concave.Asweshallsee,fhasthepropertythatthesetofpointsxforwhichfðxÞc(wherecisanyconstant)isconvex.Forsuchafunction,thenecessaryconditionsforamaximumarealsosufficient.ExampleForthefencesproblem,fðx,yÞ¼xyandH0isgivenby5Noticethat,ifgij¼0foralliandj,thenHbcanberegardedasthesimpleHessianassociatedwiththeLagrangianexpressiongiveninEquation2.50,whichisafunctionofthenþ1variablesλ,x1,…,xn.6NoticethatthefirstleadingprincipalminorofHbis0.7Thiscanbeshownbynotingthatmultiplyingarow(oracolumn)ofamatrixbyaconstantmultipliesthedeterminantbythatconstant.Chapter2MathematicsforMicroeconomics83
H0¼0yxy01x102435:SoH02¼y2<0,H03¼2xy>0,andthefunctionisquasi-concave.8ExampleMoregenerally,iffisafunctionofonlytwovariables,thenquasi-concavityrequiresthatH02¼ðf1Þ2<0andH03¼f11f22f22f21þ2f1f2f12>0,whichispreciselytheconditionstatedinEqua-tion2.114.Hence,wehaveafairlysimplewayofdeterminingquasi-concavity.ReferencesSimon,C.P.,andL.Blume.MathematicsforEconomists.NewYork:W.W.Norton,1994.Sydsaeter,R.,A.Strom,andP.Berck.Economists’Math-ematicalManual,3rded.Berlin:Springer-Verlag,2000.8Sincefðx,yÞ¼xyisaformofaCobb-Douglasfunctionthatisnotconcave,thisshowsthatnoteveryquasi-concavefunctionisconcave.Noticethatamonotonicfunctionoff(suchasf1=3)wouldbeconcave,however.84Part1Introduction
PART2ChoiceandDemandCHAPTER3PreferencesandUtilityCHAPTER4UtilityMaximizationandChoiceCHAPTER5IncomeandSubstitutionEffectsCHAPTER6DemandRelationshipsamongGoodsCHAPTER7UncertaintyandInformationCHAPTER8StrategyandGameTheoryInPart2wewillinvestigatetheeconomictheoryofchoice.Onegoalofthisexaminationistodevelopthenotionofdemandinaformalwaysothatitcanbeusedinlatersectionsofthetextwhenweturntothestudyofmarkets.Amoregeneralgoalofthispartistoillustratethetheoryeconomistsusetoexplainhowindividualsmakechoicesinawidevarietyofcontexts.Part2beginswithadescriptionofthewayeconomistsmodelindividualpreferences,whichareusuallyreferredtobytheformaltermutility.Chapter3showshoweconomistsareabletoconceptualizeutilityinamathematicalway.Thispermitsthedevelopmentof“indifferencecurves,”whichshowthevariousex-changesthatindividualsarewillingtomakevoluntarily.TheutilityconceptisusedinChapter4toillustratethetheoryofchoice.Thefundamentalhypothesisofthechapteristhatpeoplefacedwithlimitedincomeswillmakeeconomicchoicesinsuchawayastoachieveasmuchutilityaspossible.Chapter4usesmathematicalandintuitiveanalysestoindicatetheinsightsthatthishypothesisprovidesabouteconomicbehavior.Chapters5and6usethemodelofutilitymaximizationtoinvestigatehowindividualswillrespondtochangesintheircircumstances.Chapter5isprimarilyconcernedwithresponsestochangesinthepriceofacommodity,ananalysisthatleadsdirectlytothedemandcurvenotion.Chapter6appliesthistypeofanalysistodevelopinganunderstandingofdemandrelationshipsamongdifferentgoods.Thefinaltwochaptersinthispartlookatindividualbehaviorinuncertainsituations.InChapter7wedescribewhypeoplegenerallydislikerisksandarewillingtopaysomethingtoavoidtakingthem.Chapter8thenlooksatuncertaintiesthatarisewhentwoormorepeoplefindthemselvesina“game”inwhichtheymustmakestrategicchoices.Theequilibriumnotionswedevelopinstudyingsuchgamesarewidelyusedthroughouteconomics.
This page intentionally left blank
CHAPTER3PreferencesandUtilityInthischapterwelookatthewayinwhicheconomistscharacterizeindividuals’preferences.Webeginwithafairlyabstractdiscussionofthe“preferencerelation,”butquicklyturntotheeconomists’primarytoolforstudyingindividualchoices—theutilityfunction.Welookatsomegeneralcharacteristicsofthatfunctionandafewsimpleexamplesofspecificutilityfunctionswewillencounterthroughoutthisbook.AXIOMSOFRATIONALCHOICEOnewaytobeginananalysisofindividuals’choicesistostateabasicsetofpostulates,oraxioms,thatcharacterize“rational”behavior.Thesebeginwiththeconceptof“preference”:Anindividualwhoreportsthat“AispreferredtoB”istakentomeanthatallthingscon-sidered,heorshefeelsbetteroffundersituationAthanundersituationB.Thepreferencerelationisassumedtohavethreebasicpropertiesasfollows.I.Completeness.IfAandBareanytwosituations,theindividualcanalwaysspecifyexactlyoneofthefollowingthreepossibilities:1.“AispreferredtoB,”2.“BispreferredtoA,”or3.“AandBareequallyattractive.”Consequently,peopleareassumednottobeparalyzedbyindecision:Theycompletelyunderstandandcanalwaysmakeuptheirmindsaboutthedesirabilityofanytwoalternatives.TheassumptionalsorulesoutthepossibilitythatanindividualcanreportboththatAispreferredtoBandthatBispreferredtoA.II.Transitivity.Ifanindividualreportsthat“AispreferredtoB”and“BispreferredtoC,”thenheorshemustalsoreportthat“AispreferredtoC.”Thisassumptionstatesthattheindividual’schoicesareinternallyconsistent.Suchanassumptioncanbesubjectedtoempiricalstudy.Generally,suchstudiesconcludethataperson’schoicesareindeedtransitive,butthisconclusionmustbemodifiedincaseswheretheindividualmaynotfullyunderstandtheconsequencesofthechoicesheorsheismaking.Because,forthemostpart,wewillassumechoicesarefullyinformed(butseethediscussionofuncertaintyinChapter7andelsewhere),thetransitivitypropertyseemstobeanappropriateassumptiontomakeaboutpreferences.III.Continuity.Ifanindividualreports“AispreferredtoB,”thensituationssuitably“closeto”AmustalsobepreferredtoB.Thisrathertechnicalassumptionisrequiredifwewishtoanalyzeindividuals’responsestorelativelysmallchangesinincomeandprices.Thepurposeoftheassumptionistoruleoutcertainkindsofdiscontinuous,knife-edgepreferencesthatposeproblemsforamathematicaldevelopmentofthetheoryofchoice.Assumingcontinuitydoes87
notseemtoriskmissingtypesofeconomicbehaviorthatareimportantintherealworld.UTILITYGiventheassumptionsofcompleteness,transitivity,andcontinuity,itispossibletoshowformallythatpeopleareabletorankallpossiblesituationsfromtheleastdesirabletothemost.1Followingtheterminologyintroducedbythenineteenth-centurypoliticaltheoristJeremyBentham,economistscallthisrankingutility.2WealsowillfollowBenthambysayingthatmoredesirablesituationsoffermoreutilitythandolessdesirableones.Thatis,ifapersonpreferssituationAtosituationB,wewouldsaythattheutilityassignedtooptionA,denotedbyUðAÞ,exceedstheutilityassignedtoB,UðBÞ.NonuniquenessofutilitymeasuresWemightevenattachnumberstotheseutilityrankings;however,thesenumberswillnotbeunique.Anysetofnumberswearbitrarilyassignthataccuratelyreflectstheoriginalprefer-enceorderingwillimplythesamesetofchoices.ItmakesnodifferencewhetherwesaythatUðAÞ¼5andUðBÞ¼4,orthatUðAÞ¼1,000,000andUðBÞ¼0:5.InbothcasesthenumbersimplythatAispreferredtoB.Intechnicalterms,ournotionofutilityisdefinedonlyuptoanorder-preserving(“monotonic”)transformation.3Anysetofnumbersthataccuratelyreflectsaperson’spreferenceorderingwilldo.Consequently,itmakesnosensetoask“howmuchmoreisApreferredthanB?”sincethatquestionhasnouniqueanswer.Surveysthataskpeopletoranktheir“happiness”onascaleof1to10couldjustaswelluseascaleof7to1,000,000.Wecanonlyhopethatapersonwhoreportsheorsheisa“6”onthescaleonedayanda“7”onthenextdayisindeedhappieronthesecondday.Utilityrankingsarethereforeliketheordinalrankingsofrestaurantsormoviesusingone,two,three,orfourstars.Theysimplyrecordtherelativedesirabilityofcommoditybundles.Thislackofuniquenessintheassignmentofutilitynumbersalsoimpliesthatitisnotpossibletocompareutilitiesofdifferentpeople.Ifonepersonreportsthatasteakdinnerprovidesautilityof“5”andanotherreportsthatthesamedinneroffersautilityof“100,”wecannotsaywhichindividualvaluesthedinnermorebecausetheycouldbeusingverydifferentscales.Similarly,wehavenowayofmeasuringwhetheramovefromsituationAtosituationBprovidesmoreutilitytoonepersonoranother.Nonetheless,aswewillsee,economistscansayquiteabitaboututilityrankingsbyexaminingwhatpeoplevoluntarilychoosetodo.TheceterisparibusassumptionBecauseutilityreferstooverallsatisfaction,suchameasureclearlyisaffectedbyavarietyoffactors.Aperson’sutilityisaffectednotonlybyhisorherconsumptionofphysicalcommod-ities,butalsobypsychologicalattitudes,peergrouppressures,personalexperiences,andthe1ThesepropertiesandtheirconnectiontorepresentationofpreferencesbyautilityfunctionarediscussedindetailinAndreuMas-Colell,MichaelD.Whinston,andJerryR.Green,MicroeconomicTheory(NewYork:OxfordUniversityPress,1995).2J.Bentham,IntroductiontothePrinciplesofMoralsandLegislation(London:Hafner,1848).3WecandenotethisideamathematicallybysayingthatanynumericalutilityrankingðUÞcanbetransformedintoanothersetofnumbersbythefunctionFprovidingthatFðUÞisorderpreserving.ThiscanbeensuredifF0ðUÞ>0.Forexample,thetransformationFðUÞ¼U2isorderpreservingasisthetransformationFðUÞ¼lnU.Atsomeplacesinthetextandproblemswewillfinditconvenienttomakesuchtransformationsinordertomakeaparticularutilityrankingeasiertoanalyze.88Part2ChoiceandDemand
generalculturalenvironment.Althougheconomistsdohaveageneralinterestinexaminingsuchinfluences,anarrowingoffocusisusuallynecessary.Consequently,acommonpracticeistodevoteattentionexclusivelytochoicesamongquantifiableoptions(forexample,therelativequantitiesoffoodandshelterbought,thenumberofhoursworkedperweek,orthevotesamongspecifictaxingformulas)whileholdingconstanttheotherthingsthataffectbehavior.Thisceterisparibus(otherthingsbeingequal)assumptionisinvokedinalleco-nomicanalysesofutility-maximizingchoicessoastomaketheanalysisofchoicesmanageablewithinasimplifiedsetting.UtilityfromconsumptionofgoodsAsanimportantexampleoftheceterisparibusassumption,consideranindividual’sproblemofchoosing,atasinglepointintime,amongnconsumptiongoodsx1,x2,…,xn:Weshallassumethattheindividual’srankingofthesegoodscanberepresentedbyautilityfunctionoftheformutility¼Uðx1,x2,…,xn;otherthingsÞ,(3.1)wherethex’srefertothequantitiesofthegoodsthatmightbechosenandthe“otherthings”notationisusedasareminderthatmanyaspectsofindividualwelfarearebeingheldconstantintheanalysis.QuiteoftenitiseasiertowriteEquation3.1asutility¼Uðx1,x2,…,xnÞ(3.2)or,ifonlytwogoodsarebeingconsidered,asutility¼Uðx,yÞ,(3.20)whereitisclearthateverythingisbeingheldconstant(thatis,outsidetheframeofanalysis)exceptthegoodsactuallyreferredtointheutilityfunction.Itwouldbetedioustoremindyouateachstepwhatisbeingheldconstantintheanalysis,butitshouldberememberedthatsomeformoftheceterisparibusassumptionwillalwaysbeineffect.ArgumentsofutilityfunctionsTheutilityfunctionnotationisusedtoindicatehowanindividualrankstheparticularargumentsofthefunctionbeingconsidered.Inthemostcommoncase,theutilityfunction(Equation3.2)willbeusedtorepresenthowanindividualrankscertainbundlesofgoodsthatmightbepurchasedatonepointintime.Onoccasionwewilluseotherargumentsintheutilityfunction,anditisbesttoclearupcertainconventionsattheoutset.Forexample,itmaybeusefultotalkabouttheutilityanindividualreceivesfromrealwealthðWÞ.Therefore,weshallusethenotationutility¼UðWÞ.(3.3)Unlesstheindividualisaratherpeculiar,Scrooge-typeperson,wealthinitsownrightgivesnodirectutility.Rather,itisonlywhenwealthisspentonconsumptiongoodsthatanyutilityresults.Forthisreason,Equation3.3willbetakentomeanthattheutilityfromwealthisinfactderivedbyspendingthatwealthinsuchawayastoyieldasmuchutilityaspossible.Twootherargumentsofutilityfunctionswillbeusedinlaterchapters.InChapter16wewillbeconcernedwiththeindividual’slabor-leisurechoiceandwillthereforehavetocon-siderthepresenceofleisureintheutilityfunction.Afunctionoftheformutility¼Uðc,hÞ(3.4)willbeused.Here,crepresentsconsumptionandhrepresentshoursofnonworktime(thatis,leisure)duringaparticulartimeperiod.Chapter3PreferencesandUtility89
InChapter17wewillbeinterestedintheindividual’sconsumptiondecisionsindifferenttimeperiods.Inthatchapterwewilluseautilityfunctionoftheformutility¼Uðc1,c2Þ,(3.5)wherec1isconsumptioninthisperiodandc2isconsumptioninthenextperiod.Bychangingtheargumentsoftheutilityfunction,therefore,wewillbeabletofocusonspecificaspectsofanindividual’schoicesinavarietyofsimplifiedsettings.Insummarythen,westartourexaminationofindividualbehaviorwiththefollowingdefinition.DEFINITIONUtility.Individuals’preferencesareassumedtoberepresentedbyautilityfunctionoftheformUðx1,x2,…,xnÞ,(3.6)wherex1,x2,…,xnarethequantitiesofeachofngoodsthatmightbeconsumedinaperiod.Thisfunctionisuniqueonlyuptoanorder-preservingtransformation.EconomicgoodsInthisrepresentationthevariablesaretakentobe“goods”;thatis,whatevereconomicquan-titiestheyrepresent,weassumethatmoreofanyparticularxiduringsomeperiodispreferredtoless.Weassumethisistrueofeverygood,beitasimpleconsumptionitemsuchasahotdogoracomplexaggregatesuchaswealthorleisure.Wehavepicturedthisconventionforatwo-goodutilityfunctioninFigure3.1.There,allconsumptionbundlesintheshadedareaareFIGURE3.1MoreofaGoodIsPreferredtoLessTheshadedarearepresentsthosecombinationsofxandythatareunambiguouslypreferredtothecombinationx,y.Ceterisparibus,individualsprefermoreofanygoodratherthanless.Combina-tionsidentifiedby“?”involveambiguouschangesinwelfarebecausetheycontainmoreofonegoodandlessoftheother.Quantity of xQuantityof y??Preferredtox*, y*Worsethanx*, y*y*x*90Part2ChoiceandDemand
preferredtothebundlex,ybecauseanybundleintheshadedareaprovidesmoreofatleastoneofthegoods.Byourdefinitionof“goods,”then,bundlesofgoodsintheshadedareaarerankedhigherthanx,y.Similarly,bundlesintheareamarked“worse”areclearlyinferiortox,y,sincetheycontainlessofatleastoneofthegoodsandnomoreoftheother.Bundlesinthetwoareasindicatedbyquestionmarksaredifficulttocomparetox,ybecausetheycontainmoreofoneofthegoodsandlessoftheother.Movementsintotheseareasinvolvetrade-offsbetweenthetwogoods.TRADESANDSUBSTITUTIONMosteconomicactivityinvolvesvoluntarytradingbetweenindividuals.Whensomeonebuys,say,aloafofbread,heorsheisvoluntarilygivinguponething(money)forsomethingelse(bread)thatisofgreatervaluetothatindividual.Toexaminethiskindofvoluntarytransaction,weneedtodevelopaformalapparatusforillustratingtradesintheutilityfunctioncontext.IndifferencecurvesandthemarginalrateofsubstitutionTodiscusssuchvoluntarytrades,wedeveloptheideaofanindifferencecurve.InFigure3.2,thecurveU1representsallthealternativecombinationsofxandyforwhichanindividualisequallywelloff(rememberagainthatallotherargumentsoftheutilityfunctionarebeingFIGURE3.2ASingleIndifferenceCurveThecurveU1representsthosecombinationsofxandyfromwhichtheindividualderivesthesameutility.Theslopeofthiscurverepresentstherateatwhichtheindividualiswillingtotradexforywhileremainingequallywelloff.Thisslope(or,moreproperly,thenegativeoftheslope)istermedthemarginalrateofsubstitution.Inthefigure,theindifferencecurveisdrawnontheassumptionofadiminishingmarginalrateofsubstitution.Quantity of xQuantityof yx2x1y1U1U1y2Chapter3PreferencesandUtility91
heldconstant).Thispersonisequallyhappyconsuming,forexample,eitherthecombinationofgoodsx1,y1orthecombinationx2,y2.Thiscurverepresentingalltheconsumptionbundlesthattheindividualranksequallyiscalledanindifferencecurve.DEFINITIONIndifferencecurve.Anindifferencecurve(or,inmanydimensions,anindifferencesurface)showsasetofconsumptionbundlesaboutwhichtheindividualisindifferent.Thatis,thebundlesallprovidethesamelevelofutility.TheslopeoftheindifferencecurveinFigure3.2isnegative,showingthatiftheindividualisforcedtogiveupsomey,heorshemustbecompensatedbyanadditionalamountofxtoremainindifferentbetweenthetwobundlesofgoods.Thecurveisalsodrawnsothattheslopeincreasesasxincreases(thatis,theslopestartsatnegativeinfinityandincreasestowardzero).Thisisagraphicalrepresentationoftheassumptionthatpeoplebecomeprogressivelylesswillingtotradeawayytogetmorex.Inmathematicalterms,theabsolutevalueofthisslopediminishesasxincreases.Hence,wehavethefollowingdefinition.DEFINITIONMarginalrateofsubstitution.ThenegativeoftheslopeofanindifferencecurveðU1Þatsomepointistermedthemarginalrateofsubstitution(MRS)atthatpoint.Thatis,MRS¼dydxU¼U1,(3.7)wherethenotationindicatesthattheslopeistobecalculatedalongtheU1indifferencecurve.TheslopeofU1andtheMRSthereforetellussomethingaboutthetradesthispersonwillvoluntarilymake.Atapointsuchasx1,y1,thepersonhasquitealotofyandiswillingtotradeawayasignificantamounttogetonemorex.Theindifferencecurveatx1,y1isthereforerathersteep.Thisisasituationwherethepersonhas,say,manyhamburgersðyÞandlittletodrinkwiththem(x).Thispersonwouldgladlygiveupafewburgers(say,5)toquenchhisorherthirstwithonemoredrink.Atx2,y2,ontheotherhand,theindifferencecurveisflatter.Here,thispersonhasquiteafewdrinksandiswillingtogiveuprelativelyfewburgers(say,1)togetanothersoftdrink.Consequently,theMRSdiminishesbetweenx1,y1andx2,y2.ThechangingslopeofU1showshowtheparticularconsumptionbundleavailableinfluencesthetradesthispersonwillfreelymake.IndifferencecurvemapInFigure3.2onlyoneindifferencecurvewasdrawn.Thex,yquadrant,however,isdenselypackedwithsuchcurves,eachcorrespondingtoadifferentlevelofutility.Becauseeverybundleofgoodscanberankedandyieldssomelevelofutility,eachpointinFigure3.2musthaveanindifferencecurvepassingthroughit.Indifferencecurvesaresimilartocontourlinesonamapinthattheyrepresentlinesofequal“altitude”ofutility.InFigure3.3severalindifferencecurvesareshowntoindicatethatthereareinfinitelymanyintheplane.Thelevelofutilityrepresentedbythesecurvesincreasesaswemoveinanortheastdirection;theutilityofcurveU1islessthanthatofU2,whichislessthanthatofU3.ThisisbecauseoftheassumptionmadeinFigure3.1:Moreofagoodispreferredtoless.Aswasdiscussedearlier,thereisnouniquewaytoassignnumberstotheseutilitylevels.ThecurvesonlyshowthatthecombinationsofgoodsonU3arepreferredtothoseonU2,whicharepreferredtothoseonU1.92Part2ChoiceandDemand
IndifferencecurvesandtransitivityAsanexerciseinexaminingtherelationshipbetweenconsistentpreferencesandtherepresenta-tionofpreferencesbyutilityfunctions,considerthefollowingquestion:Cananytwoofanindividual’sindifferencecurvesintersect?TwosuchintersectingcurvesareshowninFigure3.4.Wewishtoknowiftheyviolateourbasicaxiomsofrationality.Usingourmapanalogy,therewouldseemtobesomethingwrongatpointE,where“altitude”isequaltotwodifferentnumbers,U1andU2.Butnopointcanbeboth100and200feetabovesealevel.Toproceedformally,letusanalyzethebundlesofgoodsrepresentedbypointsA,B,C,andD.Bytheassumptionofnonsatiation(i.e.,moreofagoodalwaysincreasesutility),“AispreferredtoB”and“CispreferredtoD.”ButthispersonisequallysatisfiedwithBandC(theylieonthesameindifferencecurve),sotheaxiomoftransitivityimpliesthatAmustbepreferredtoD.Butthatcannotbetrue,becauseAandDareonthesameindifferencecurveandarebydefinitionregardedasequallydesirable.Thiscontradictionshowsthatindifferencecurvescannotintersect.ThereforeweshouldalwaysdrawindifferencecurvemapsastheyappearinFigure3.3.ConvexityofindifferencecurvesAnalternativewayofstatingtheprincipleofadiminishingmarginalrateofsubstitutionusesthemathematicalnotionofaconvexset.Asetofpointsissaidtobeconvexifanytwopointswithinthesetcanbejoinedbyastraightlinethatiscontainedcompletelywithintheset.Theas-sumptionofadiminishingMRSisequivalenttotheassumptionthatallcombinationsofxandyFIGURE3.3ThereAreInfinitelyManyIndifferenceCurvesinthex–yPlaneThereisanindifferencecurvepassingthrougheachpointinthex–yplane.Eachofthesecurvesrecordscombinationsofxandyfromwhichtheindividualreceivesacertainlevelofsatisfaction.Movementsinanortheastdirectionrepresentmovementstohigherlevelsofsatisfaction.Quantity of xQuantityof yIncreasing utilityU1U1U2U3U2U3Chapter3PreferencesandUtility93
thatarepreferredorindifferenttoaparticularcombinationx,yformaconvexset.4ThisisillustratedinFigure3.5a,whereallcombinationspreferredorindifferenttox,yareintheshadedarea.Anytwoofthesecombinations—say,x1,y1andx2,y2—canbejoinedbyastraightlinealsocontainedintheshadedarea.InFigure3.5bthisisnottrue.Alinejoiningx1,y1andx2,y2passesoutsidetheshadedarea.Therefore,theindifferencecurvethroughx,yinFigure3.5bdoesnotobeytheassumptionofadiminishingMRS,becausethesetofpointspreferredorindifferenttox,yisnotconvex.ConvexityandbalanceinconsumptionByusingthenotionofconvexity,wecanshowthatindividualsprefersomebalanceintheirconsumption.Supposethatanindividualisindifferentbetweenthecombinationsx1,y1andx2,y2.Iftheindifferencecurveisstrictlyconvex,thenthecombinationðx1þx2Þ=2,ðy1þy2Þ=2willbepreferredtoeitheroftheinitialcombinations.5Intuitively,“well-balanced”bundlesofcommoditiesarepreferredtobundlesthatareheavilyweightedtowardonecommodity.ThisisillustratedinFigure3.6.Becausetheindifferencecurveisassumedtobeconvex,allpointsonthestraightlinejoiningðx1,y1Þandðx2,y2Þarepreferredtotheseinitialpoints.Thisthereforewillbetrueofthepointðx1þx2Þ=2,ðy1þy2Þ=2,whichliesatthemidpointofsuchaline.FIGURE3.4IntersectingIndifferenceCurvesImplyInconsistentPreferencesCombinationsAandDlieonthesameindifferencecurveandthereforeareequallydesirable.ButtheaxiomoftransitivitycanbeusedtoshowthatAispreferredtoD.Hence,intersectingindifferencecurvesarenotconsistentwithrationalpreferences.Quantity of xQuantityof yDCEABU2U14Thisdefinitionisequivalenttoassumingthattheutilityfunctionisquasi-concave.SuchfunctionswerediscussedinChapter2,andweshallreturntoexaminetheminthenextsection.Sometimesthetermstrictquasi-concavityisusedtoruleoutthepossibilityofindifferencecurveshavinglinearsegments.Wegenerallywillassumestrictquasi-concavity,butinafewplaceswewillillustratethecomplicationsposedbylinearportionsofindifferencecurves.5Inthecaseinwhichtheindifferencecurvehasalinearsegment,theindividualwillbeindifferentamongallthreecombinations.94Part2ChoiceandDemand
FIGURE3.5TheNotionofConvexityasanAlternativeDefinitionofaDiminishingMRSIn(a)theindifferencecurveisconvex(anylinejoiningtwopointsaboveU1isalsoaboveU1).In(b)thisisnotthecase,andthecurveshownheredoesnoteverywherehaveadiminishingMRS.Quantityof xQuantityof xQuantityof yQuantityof y(b)(a)U1U1U1U1y1y2y2x1x1x2x*x2x*y*y1y*FIGURE3.6BalancedBundlesofGoodsArePreferredtoExtremeBundlesIfindifferencecurvesareconvex(iftheyobeytheassumptionofadiminishingMRS),thenthelinejoininganytwopointsthatareindifferentwillcontainpointspreferredtoeitheroftheinitialcombinations.Intuitively,balancedbundlesarepreferredtounbalancedones.Quantity of xQuantityof y2x1+ x22y1+ y2U1U1y1x1x2y2
Indeed,anyproportionalcombinationofthetwoindifferentbundlesofgoodswillbepreferredtotheinitialbundles,becauseitwillrepresentamorebalancedcombination.Thus,strictconvexityisequivalenttotheassumptionofadiminishingMRS.Bothassumptionsruleoutthepossibilityofanindifferencecurvebeingstraightoveranyportionofitslength.EXAMPLE3.1UtilityandtheMRSSupposeaperson’srankingofhamburgersðyÞandsoftdrinksðxÞcouldberepresentedbytheutilityfunctionutility¼ffiffiffiffiffiffiffiffiffix⋅yp.(3.8)Anindifferencecurveforthisfunctionisfoundbyidentifyingthatsetofcombinationsofxandyforwhichutilityhasthesamevalue.Supposewearbitrarilysetutilityequalto10.Thentheequationforthisindifferencecurveisutility¼10¼ffiffiffiffiffiffiffiffiffix⋅yp.(3.9)Becausesquaringthisfunctionisorderpreserving,theindifferencecurveisalsorepre-sentedby100¼x⋅y,(3.10)whichiseasiertograph.InFigure3.7weshowthisindifferencecurve;itisafamiliarrectangularhyperbola.OnewaytocalculatetheMRSistosolveEquation3.10fory,y¼100=x,(3.11)FIGURE3.7IndifferenceCurveforUtility¼ffiffiffiffiffiffiffiffiffix⋅ypThisindifferencecurveillustratesthefunction10¼U¼ffiffiffiffiffiffiffiffiffix⋅yp.AtpointA(5,20),theMRSis4,implyingthatthispersoniswillingtotrade4yforanadditionalx.AtpointB(20,5),however,theMRSis0.25,implyingagreatlyreducedwillingnesstotrade.Quantity of xQuantityof y2012.55200512.5ACBU= 1096Part2ChoiceandDemand
andthenusethedefinition(Equation3.7):MRS¼dy=dxðalongU1Þ¼100=x2.(3.12)ClearlythisMRSdeclinesasxincreases.AtapointsuchasAontheindifferencecurvewithalotofhamburgers(say,x¼5,y¼20),theslopeissteepsotheMRSishigh:MRSatð5,20Þ¼100=x2¼100=25¼4.(3.13)Herethepersoniswillingtogiveup4hamburgerstoget1moresoftdrink.Ontheotherhand,atBwheretherearerelativelyfewhamburgers(herex¼20,y¼5),theslopeisflatandtheMRSislow:MRSatð20,5Þ¼100=x2¼100=400¼0:25.(3.14)Nowheorshewillonlygiveuponequarterofahamburgerforanothersoftdrink.NoticealsohowconvexityoftheindifferencecurveU1isillustratedbythisnumericalexample.PointCismidwaybetweenpointsAandB;atCthispersonhas12.5hamburgersand12.5softdrinks.Hereutilityisgivenbyutility¼ffiffiffiffiffiffiffiffiffix⋅yp¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið12:5Þ2q¼12:5,(3.15)whichclearlyexceedstheutilityalongU1(whichwasassumedtobe10).QUERY:Fromourderivationhere,itappearsthattheMRSdependsonlyonthequantityofxconsumed.Whyisthismisleading?HowdoesthequantityofyimplicitlyenterintoEquations3.13and3.14?AMATHEMATICALDERIVATIONAmathematicalderivationprovidesadditionalinsightsabouttheshapeofindifferencecurvesandthenatureofpreferences.Inthissectionweprovidesuchaderivationforthecaseofautilityfunctioninvolvingonlytwogoods.Thiswillallowustocomparethemathematicstothetwo-dimensionalindifferencecurvemap.Thecaseofmanygoodswillbetakenupattheendofthechapter,butitwillturnoutthatthismorecomplicatedcasereallyaddsverylittle.TheMRSandmarginalutilityIftheutilityapersonreceivesfromtwogoodsisrepresentedbyUðx,yÞ,wecanwritethetotaldifferentialofthisfunctionasdU¼∂U∂x⋅dxþ∂U∂y⋅dy.(3.16)AlonganyparticularindifferencecurvedU¼0,asimplemanipulationofEquation3.16yieldsMRS¼dydxU¼constant¼∂U=∂x∂U=∂y.(3.17)Inwords,theMRSofxforyisequaltotheratioofthemarginalutilityofx(thatis,∂U=∂x)tothemarginalutilityofyð∂U=∂yÞ.Thisresultmakesintuitivesense.Supposethataperson’sutilitywereactuallymeasurablein,say,unitscalled“utils.”Assumealsothatthispersonconsumesonlytwogoods,foodðxÞandclothing(y),andthateachextraunitoffoodprovides6utilswhereaseachextraunitofclothingprovides2utils.ThenEquation3.17wouldmeanthatChapter3PreferencesandUtility97
MRS¼dydxU¼constant¼6utils2utils¼3,sothispersoniswillingtotradeaway3unitsofclothingtoget1moreunitoffood.Thistradewouldresultinnonetchangeinutilitybecausethegainsandlosseswouldbepreciselyoffsetting.Noticethattheunitsinwhichutilityismeasured(whatwehave,forlackofabetterword,called“utils”)canceloutinmakingthiscalculation.Althoughmarginalutilityisobviouslyaffectedbytheunitsinwhichutilityismeasured,theMRSisindependentofthatchoice.6TheconvexityofindifferencecurvesInChapter1wedescribedhowtheassumptionofdiminishingmarginalutilitywasusedbyMarshalltosolvethewater-diamondparadox.Marshalltheorizedthatitisthemarginalvaluationthatanindividualplacesonagoodthatdeterminesitsvalue:Itistheamountthatanindividualiswillingtopayforonemorepintofwaterthatdeterminesthepriceofwater.Becauseitmightbethoughtthatthismarginalvaluedeclinesasthequantityofwaterthatisconsumedincreases,Marshallshowedwhywaterhasalowexchangevalue.Intuitively,itseemsthattheassumptionofadecreasingmarginalutilityofagoodisrelatedtotheassump-tionofadecreasingMRS;bothconceptsseemtorefertothesamecommonsenseideaofanindividualbecomingrelativelysatiatedwithagoodasmoreofitisconsumed.Unfortunately,thetwoconceptsarequitedifferent.(SeeProblem3.3.)Technically,theassumptionofadiminishingMRSisequivalenttorequiringthattheutilityfunctionbequasi-concave.Thisrequirementisrelatedinarathercomplexwaytotheassumptionthateachgoodencountersdiminishingmarginalutility(thatis,thatfiiisnegativeforeachgood).7Butthatistobeexpectedbecausetheconceptofdiminishingmarginalutilityisnotindependentofhow6Moreformally,letFðUÞbeanyarbitraryorder-preservingtransformationofU(thatis,F0ðUÞ>0).Then,forthetransformedutilityfunction,MRS¼∂F=∂x∂F=∂y¼F0ðUÞ∂U=∂xF0ðUÞ∂U=∂y¼∂U=∂x∂U=∂y,whichistheMRSfortheoriginalfunctionU.ThattheF0ðUÞtermscanceloutshowsthattheMRSisindependentofhowutilityismeasured.7WehaveshownthatifutilityisgivenbyU¼fðx,yÞ,thenMRS¼fxfy¼f1f2¼dydx.TheassumptionofadiminishingMRSmeansthatdMRS=dx<0,butdMRSdx¼f2ðf11þf12⋅dy=dxÞf1ðf21þf22⋅dy=dxÞf22:Usingthefactthatf1=f2¼dy=dx,wehavedMRSdx¼f2½f11f12ðf1=f2Þf1½f21f22ðf1=f2Þf22:Combiningtermsandrecognizingthatf12¼f21yieldsdMRSdx¼f2f112f1f12þðf22f21Þ=f2f22or,multiplyingnumeratoranddenominatorbyf2,dMRSdx¼f22f112f1f2f12þf21f22f32.98Part2ChoiceandDemand
utilityitselfismeasured,whereastheconvexityofindifferencecurvesisindeedindependentofsuchmeasurement.EXAMPLE3.2ShowingConvexityofIndifferenceCurvesCalculationoftheMRSforspecificutilityfunctionsisfrequentlyagoodshortcutforshowingconvexityofindifferencecurves.Inparticular,theprocesscanbemuchsimplerthanapplyingthedefinitionofquasi-concavity,thoughitismoredifficulttogeneralizetomorethantwogoods.HerewelookathowEquation3.17canbeusedforthreedifferentutilityfunctions(formorepractice,seeProblem3.1).1.Uðx,yÞ¼ffiffiffiffiffiffiffiffiffix⋅yp.ThisexamplejustrepeatsthecaseillustratedinExample3.1.OneshortcuttoapplyingEquation3.17thatcansimplifythealgebraistotakethelogarithmofthisutilityfunction.Becausetakinglogsisorderpreserving,thiswillnotaltertheMRStobecalculated.So,letUðx,yÞ¼ln½Uðx,yÞ¼0:5lnxþ0:5lny.(3.18)ApplyingEquation3.17yieldsMRS¼∂U=∂x∂U=∂y¼0:5=x0:5=y¼yx,(3.19)whichseemstobeamuchsimplerapproachthanweusedpreviously.8ClearlythisMRSisdiminishingasxincreasesandydecreases.Theindifferencecurvesarethereforeconvex.2.Uðx,yÞ¼xþxyþy.Inthiscasethereisnoadvantagetotransformingthisutilityfunction.ApplyingEquation3.17yieldsMRS¼∂U=∂x∂U=∂y¼1þy1þx.(3.20)Again,thisratioclearlydecreasesasxincreasesandydecreases,sotheindifferencecurvesforthisfunctionareconvex.3.Uðx,yÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffix2þy2p.ForthisexampleitiseasiertousethetransformationUðx,yÞ¼½Uðx,yÞ2¼x2þy2.(3.21)Becausethisistheequationforaquarter-circle,weshouldbegintosuspectthatthere(continued)Ifweassumethatf2>0(thatmarginalutilityispositive),thentheMRSwilldiminishaslongasf22f112f1f2f12þf21f22<0.Noticethatdiminishingmarginalutility(f11<0andf22<0)willnotensurethisinequality.Onemustalsobeconcernedwiththef12term.Thatis,onemustknowhowdecreasesinyaffectthemarginalutilityofx.Ingeneralitisnotpossibletopredictthesignofthatterm.TheconditionrequiredforadiminishingMRSispreciselythatdiscussedinChapter2toensurethatthefunctionfisstrictlyquasi-concave.Theconditionshowsthatthenecessaryconditionsforamaximumoffsubjecttoalinearconstraintarealsosufficient.WewillusethisresultinChapter4andelsewhere.8InExample3.1welookedattheU¼10indifferencecurve.So,forthatcurve,y¼100=xandtheMRSinEquation3.19wouldbeMRS¼100=x2ascalculatedbefore.Chapter3PreferencesandUtility99
EXAMPLE3.2CONTINUEDmightbesomeproblemswiththeindifferencecurvesforthisutilityfunction.ThesesuspicionsareconfirmedbyagainapplyingthedefinitionoftheMRStoyieldMRS¼∂U=∂x∂U=∂y¼2x2y¼xy.(3.22)Forthisfunction,itisclearthat,asxincreasesandydecreases,theMRSincreases!Hencetheindifferencecurvesareconcave,notconvex,andthisisclearlynotaquasi-concavefunction.QUERY:DoesadoublingofxandychangetheMRSineachofthesethreeexamples?Thatis,doestheMRSdependonlyontheratioofxtoy,notontheabsolutescaleofpurchases?(SeealsoExample3.3.)UTILITYFUNCTIONSFORSPECIFICPREFERENCESIndividuals’rankingsofcommoditybundlesandtheutilityfunctionsimpliedbytheserankingsareunobservable.Allwecanlearnaboutpeople’spreferencesmustcomefromthebehaviorweobservewhentheyrespondtochangesinincome,prices,andotherfactors.Itisneverthelessusefultoexamineafewoftheformsparticularutilityfunctionsmighttake,becausesuchanexaminationmayofferinsightsintoobservedbehaviorand(moretothepoint)understandingthepropertiesofsuchfunctionscanbeofsomehelpinsolvingproblems.Herewewillexaminefourspecificexamplesofutilityfunctionsfortwogoods.IndifferencecurvemapsforthesefunctionsareillustratedinthefourpanelsofFigure3.8.Asshouldbevisuallyapparent,thesecoverquiteafewpossibleshapes.Evengreatervarietyispossibleoncewemovetofunctionsforthreeormoregoods,andsomeofthesepossibilitiesarementionedinlaterchapters.Cobb-DouglasutilityFigure3.8ashowsthefamiliarshapeofanindifferencecurve.Onecommonlyusedutilityfunctionthatgeneratessuchcurveshastheformutility¼Uðx,yÞ¼xαyβ,(3.23)whereαandβarepositiveconstants.InExamples3.1and3.2,westudiedaparticularcaseofthisfunctionforwhichα¼β¼0:5.ThemoregeneralcasepresentedinEquation3.23istermedaCobb-Douglasutilityfunction,aftertworesearcherswhousedsuchafunctionfortheirdetailedstudyofproductionrelationshipsintheU.S.economy(seeChapter7).Ingeneral,therelativesizesofαandβindicatetherelativeimportanceofthetwogoodstothisindividual.Sinceutilityisuniqueonlyuptoamonotonictransformation,itisoftenconvenienttonormalizetheseparameterssothatαþβ¼1.PerfectsubstitutesThelinearindifferencecurvesinFigure3.8baregeneratedbyautilityfunctionoftheformutility¼Uðx,yÞ¼αxþβy,(3.24)100Part2ChoiceandDemand
where,again,αandβarepositiveconstants.Thattheindifferencecurvesforthisfunctionarestraightlinesshouldbereadilyapparent:AnyparticularlevelcurvecanbecalculatedbysettingUðx,yÞequaltoaconstantthat,giventhelinearformofthefunction,clearlyspecifiesastraightline.Thelinearnatureoftheseindifferencecurvesgaverisetothetermperfectsubstitutestodescribetheimpliedrelationshipbetweenxandy.BecausetheMRSisconstant(andequaltoα=β)alongtheentireindifferencecurve,ourpreviousnotionsofadiminishingMRSdonotapplyinthiscase.Apersonwiththesepreferenceswouldbewillingtogiveupthesameamountofytogetonemorexnomatterhowmuchxwasbeingconsumed.Suchasituationmightdescribetherelationshipbetweendifferentbrandsofwhatisessentiallythesameproduct.Forexample,manypeople(includingtheauthor)donotcarewheretheybuygasoline.AgallonofgasisagallonofgasinspiteofthebesteffortsFIGURE3.8ExamplesofUtilityFunctionsThefourindifferencecurvemapsillustratealternativedegreesofsubstitutabilityofxfory.TheCobb-DouglasandCESfunctions(drawnhereforrelativelylowsubstitutability)fallbetweentheextremesofperfectsubstitution(panelb)andnosubstitution(panelc).Quantity of x(a) Cobb-DouglasQuantityof yQuantityof yQuantityof yQuantityof yQuantity of x(b) Perfect substitutesQuantity of x(c) Perfect complementsQuantity of x(d) CESU2U2U2U2U1U0U1U0U1U1U0U0Chapter3PreferencesandUtility101
oftheExxonandShelladvertisingdepartmentstoconvincemeotherwise.Giventhisfact,Iamalwayswillingtogiveup10gallonsofExxoninexchangefor10gallonsofShellbecauseitdoesnotmattertomewhichIuseorwhereIgotmylasttankful.Indeed,aswewillseeinthenextchapter,oneimplicationofsucharelationshipisthatIwillbuyallmygasfromtheleastexpensiveseller.BecauseIdonotexperienceadiminishingMRSofExxonforShell,IhavenoreasontoseekabalanceamongthegasolinetypesIuse.PerfectcomplementsAsituationdirectlyoppositetothecaseofperfectsubstitutesisillustratedbytheL-shapedindifferencecurvesinFigure3.8c.Thesepreferenceswouldapplytogoodsthat“goto-gether”—coffeeandcream,peanutbutterandjelly,andcreamcheeseandloxarefamiliarexamples.TheindifferencecurvesshowninFigure3.8cimplythatthesepairsofgoodswillbeusedinthefixedproportionalrelationshiprepresentedbytheverticesofthecurves.Apersonwhoprefers1ounceofcreamwith8ouncesofcoffeewillwant2ouncesofcreamwith16ouncesofcoffee.Extracoffeewithoutcreamisofnovaluetothisperson,justasextracreamwouldbeofnovaluewithoutcoffee.Onlybychoosingthegoodstogethercanutilitybeincreased.TheseconceptscanbeformalizedbyexaminingthemathematicalformoftheutilityfunctionthatgeneratestheseL-shapedindifferencecurves:utility¼Uðx,yÞ¼minðαx,βyÞ.(3.25)Hereαandβarepositiveparameters,andtheoperator“min”meansthatutilityisgivenbythesmallerofthetwotermsintheparentheses.Inthecoffee-creamexample,ifweletouncesofcoffeeberepresentedbyxandouncesofcreambyy,utilitywouldbegivenbyutility¼Uðx,yÞ¼minðx,8yÞ.(3.26)Now8ouncesofcoffeeand1ounceofcreamprovide8unitsofutility.But16ouncesofcoffeeand1ounceofcreamstillprovideonly8unitsofutilitybecausemin(16,8)¼8.Theextracoffeewithoutcreamisofnovalue,asshownbythehorizontalsectionoftheindifferencecurvesformovementawayfromavertex;utilitydoesnotincreasewhenonlyxincreases(withyconstant).Onlyifcoffeeandcreamarebothdoubled(to16and2,respectively)willutilityincreaseto16.Moregenerally,neitherofthetwogoodswillbeinexcessonlyifαx¼βy.(3.27)Hencey=x¼α=β,(3.28)whichshowsthefixedproportionalrelationshipbetweenthetwogoodsthatmustoccurifchoicesaretobeattheverticesoftheindifferencecurves.CESutilityThethreespecificutilityfunctionsillustratedsofararespecialcasesofthemoregeneralconstantelasticityofsubstitutionfunction(CES),whichtakestheformutility¼Uðx,yÞ¼xδδþyδδ,(3.29)whereδ1,δ6¼0,andutility¼Uðx,yÞ¼lnxþlny(3.30)102Part2ChoiceandDemand
whenδ¼0.Itisobviousthatthecaseofperfectsubstitutescorrespondstothelimitingcase,δ¼1,inEquation3.29andthattheCobb-Douglas9casecorrespondstoδ¼0inEquation3.30.Lessobviousisthatthecaseoffixedproportionscorrespondstoδ¼∞inEquation3.29,butthatresultcanalsobeshownusingalimitsargument.Theuseoftheterm“elasticityofsubstitution”forthisfunctionderivesfromthenotionthatthepossibilitiesillustratedinFigure3.8correspondtovariousvaluesforthesubstitutionparameter,σ,whichforthisfunctionisgivenbyσ¼1=ð1δÞ.Forperfectsubstitutes,then,σ¼∞,andthefixedproportionscasehasσ¼0.10BecausetheCESfunctionallowsustoexploreallofthesecases,andmanycasesinbetween,itwillprovequiteusefulforillustratingthedegreeofsubstitutabilitypresentinvariouseconomicrelationships.ThespecificshapeoftheCESfunctionillustratedinFigure3.8aisforthecaseδ¼1.Thatis,utility¼x1y1¼1x1y.(3.31)Forthissituation,σ¼1=ð1δÞ¼1=2and,asthegraphshows,thesesharplycurvedin-differencecurvesapparentlyfallbetweentheCobb-Douglasandfixedproportioncases.Thenegativesignsinthisutilityfunctionmayseemstrange,butthemarginalutilitiesofbothxandyarepositiveanddiminishing,aswouldbeexpected.ThisexplainswhyδmustappearinthedenominatorsinEquation3.29.IntheparticularcaseofEquation3.31,utilityincreasesfrom∞(whenx¼y¼0)toward0asxandyincrease.Thisisanoddutilityscale,perhaps,butperfectlyacceptable.EXAMPLE3.3HomotheticPreferencesAlloftheutilityfunctionsdescribedinFigure3.8arehomothetic(seeChapter2).Thatis,themarginalrateofsubstitutionforthesefunctionsdependsonlyontheratiooftheamountsofthetwogoods,notonthetotalquantitiesofthegoods.Thisfactisobviousforthecaseoftheperfectsubstitutes(whentheMRSisthesameateverypoint)andthecaseofperfectcomplements(wheretheMRSisinfinitefory=x>α=β,undefinedwheny=x¼α=β,andzerowheny=x<α=β).ForthegeneralCobb-Douglasfunction,theMRScanbefoundasMRS¼∂U=∂x∂U=∂y¼αxα1yββxαyβ1¼αβ⋅yx,(3.32)whichclearlydependsonlyontheratioy=x.ShowingthattheCESfunctionisalsohomo-theticisleftasanexercise(seeProblem3.12).Theimportanceofhomotheticfunctionsisthatoneindifferencecurveismuchlikeanother.Slopesofthecurvesdependonlyontheratioy=x,notonhowfarthecurveisfromtheorigin.Indifferencecurvesforhigherutilityaresimplecopiesofthoseforlowerutility.Hence,wecanstudythebehaviorofanindividualwhohashomotheticpreferencesbylookingonlyatoneindifferencecurveoratafewnearbycurveswithoutfearingthatourresultswouldchangedramaticallyatverydifferentlevelsofutility.(continued)9TheCESfunctioncouldeasilybegeneralizedtoallowfordifferingweightstobeattachedtothetwogoods.Sincethemainuseofthefunctionistoexaminesubstitutionquestions,weusuallywillnotmakethatgeneralization.InsomeoftheapplicationsoftheCESfunction,wewillalsoomitthedenominatorsofthefunctionbecausetheseconstituteonlyascalefactorwhenδispositive.Fornegativevaluesofδ,however,thedenominatorisneededtoensurethatmarginalutilityispositive.10TheelasticityofsubstitutionconceptisdiscussedinmoredetailinconnectionwithproductionfunctionsinChapter9.Chapter3PreferencesandUtility103
EXAMPLE3.3CONTINUEDQUERY:Howmightyoudefinehomotheticfunctionsgeometrically?WhatwouldthelocusofallpointswithaparticularMRSlooklikeonanindividual’sindifferencecurvemap?EXAMPLE3.4NonhomotheticPreferencesAlthoughalloftheindifferencecurvemapsinFigure3.8exhibithomotheticpreferences,thisneednotalwaysbetrue.Considerthequasi-linearutilityfunctionutility¼Uðx,yÞ¼xþlny.(3.33)Forthisfunction,goodyexhibitsdiminishingmarginalutility,butgoodxdoesnot.TheMRScanbecomputedasMRS¼∂U=∂x∂U=∂y¼11=y¼y.(3.34)TheMRSdiminishesasthechosenquantityofydecreases,butitisindependentofthequantityofxconsumed.Becausexhasaconstantmarginalutility,aperson’swillingnesstogiveupytogetonemoreunitofxdependsonlyonhowmuchyheorshehas.Contrarytothehomotheticcase,then,adoublingofbothxandydoublestheMRSratherthanleavingitunchanged.QUERY:WhatdoestheindifferencecurvemapfortheutilityfunctioninEquation3.33looklike?Whymightthisapproximateasituationwhereyisaspecificgoodandxrepresentseverythingelse?THEMANY-GOODCASEAlloftheconceptswehavestudiedsofarforthecaseoftwogoodscanbegeneralizedtosituationswhereutilityisafunctionofarbitrarilymanygoods.Inthissection,wewillbrieflyexplorethosegeneralizations.Althoughthisexaminationwillnotaddmuchtowhatwehavealreadyshown,consideringpeoples’preferencesformanygoodscanbequiteimportantinappliedeconomics,aswewillseeinlaterchapters.TheMRSwithmanygoodsSupposeutilityisafunctionofngoodsgivenbyutility¼Uðx1,x2,…,xnÞ.(3.35)ThetotaldifferentialofthisexpressionisdU¼∂U∂x1dx1þ∂U∂x2dx2þ…þ∂U∂xndxn(3.36)and,asbefore,wecanfindtheMRSbetweenanytwogoodsbysettingdU¼0.Inthisderivation,wealsoholdconstantquantitiesofallofthegoodsotherthanthosetwo.Hencewehave104Part2ChoiceandDemand
dU¼0¼∂U∂xidxiþ∂U∂xjdxj;(3.37)aftersomealgebraicmanipulation,wegetMRSðxiforxjÞ¼dxjdxi¼∂U=∂xi∂U=∂xj,(3.38)whichispreciselywhatwegotinEquation3.17.Whetherthisconceptisasusefulasitisintwodimensionsisopentoquestion,however.Withonlytwogoods,askinghowapersonwouldtradeonefortheotherisaninterestingquestion—atransactionwemightactuallyobserve.Withmanygoods,however,itseemsunlikelythatapersonwouldsimplytradeonegoodforanotherwhileholdingallothergoodsconstant.Rather,itseemsmorelikelythatanevent(suchasapriceincrease)thatcausedapersontowanttoreduce,say,thequantityofcornflakesðxiÞconsumedwouldalsocausehimorhertochangethequantitiesconsumedofmanyothergoodssuchasmilk,sugar,Cheerios,spoons,andsoforth.AsweshallseeinChapter6,thisentirereallocationprocesscanbestbestudiedbylookingattheentireutilityfunctionasrepresentedinEquation3.35.Still,thenotionofmakingtrade-offsbetweenonlytwogoodswillproveusefulasawayofconceptualizingtheutilitymaximizationprocessthatwewilltakeupnext.MultigoodindifferencesurfacesGeneralizingtheconceptofindifferencecurvestomultipledimensionsposesnomajormathe-maticaldifficulties.WesimplydefineanindifferencesurfaceasbeingthesetofpointsinndimensionsthatsatisfytheequationUðx1,x2,…,xnÞ¼k,(3.39)wherekisanypreassignedconstant.Iftheutilityfunctionisquasi-concave,thesetofpointsforwhichUkwillbeconvex;thatis,allofthepointsonalinejoininganytwopointsontheU¼kindifferencesurfacewillalsohaveUk.Itisthispropertythatwewillfindmostusefulinlaterapplications.Unfortunately,however,themathematicalconditionsthatensurequasi-concavityinmanydimensionsarenotespeciallyintuitive(seetheExtensionstoChapter2),andvisualizingmanydimensionsisvirtuallyimpossible.Hence,whenintuitionisrequired,wewillusuallyreverttotwo-goodexamples.SUMMARYInthischapterwehavedescribedthewayinwhichecono-mistsformalizeindividuals’preferencesaboutthegoodstheychoose.Wedrewseveralconclusionsaboutsuchpreferencesthatwillplayacentralroleinouranalysisofthetheoryofchoiceinthefollowingchapters:•Ifindividualsobeycertainbasicbehavioralpostulatesintheirpreferencesamonggoods,theywillbeabletorankallcommoditybundles,andthatrankingcanberepresentedbyautilityfunction.Inmakingchoices,individualswillbehaveasiftheyweremaximizingthisfunction.•Utilityfunctionsfortwogoodscanbeillustratedbyanindifferencecurvemap.Eachindifferencecurvecontouronthismapshowsallthecommoditybundlesthatyieldagivenlevelofutility.•Thenegativeoftheslopeofanindifferencecurveisdefinedtobethemarginalrateofsubstitution(MRS).Thisshowstherateatwhichanindividualwouldwill-inglygiveupanamountofonegood(y)ifheorshewerecompensatedbyreceivingonemoreunitofanothergood(x).•TheassumptionthattheMRSdecreasesasxissubsti-tutedforyinconsumptionisconsistentwiththenotionthatindividualsprefersomebalanceintheirconsump-tionchoices.IftheMRSisalwaysdecreasing,individualsChapter3PreferencesandUtility105
PROBLEMS3.1Graphatypicalindifferencecurveforthefollowingutilityfunctionsanddeterminewhethertheyhaveconvexindifferencecurves(thatis,whethertheMRSdeclinesasxincreases).a.Uðx,yÞ¼3xþy.b.Uðx,yÞ¼ffiffiffiffiffiffiffiffiffix⋅yp:c.Uðx,yÞ¼ffiffiffixpþy:d.Uðx,yÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffix2y2q:e.Ux,yðÞ¼xyxþy.3.2Infootnote7weshowedthat,inorderforautilityfunctionfortwogoodstohaveastrictlydiminishingMRS(thatis,tobestrictlyquasi-concave),thefollowingconditionmusthold:f22f112f1f2f12þf21f22<0:UsethisconditiontochecktheconvexityoftheindifferencecurvesforeachoftheutilityfunctionsinProblem3.1.Describeanyshortcutsyoudiscoverinthisprocess.3.3Considerthefollowingutilityfunctions:a.Uðx,yÞ¼xy.b.Uðx,yÞ¼x2y2.c.Uðx,yÞ¼lnxþlny.ShowthateachofthesehasadiminishingMRSbutthattheyexhibitconstant,increasing,anddecreasingmarginalutility,respectively.Whatdoyouconclude?3.4AswesawinFigure3.5,onewaytoshowconvexityofindifferencecurvesistoshowthat,foranytwopointsðx1,y1Þandðx2,y2ÞonanindifferencecurvethatpromisesU¼k,theutilityassociatedwiththepointx1þx22,y1þy22isatleastasgreatask.Usethisapproachtodiscusstheconvexityoftheindifferencecurvesforthefollowingthreefunctions.Besuretographyourresults.a.Uðx,yÞ¼minðx,yÞ.b.Uðx,yÞ¼maxðx,yÞ.c.Uðx,yÞ¼xþy.willhavestrictlyconvexindifferencecurves.Thatis,theirutilityfunctionwillbestrictlyquasi-concave.•Afewsimplefunctionalformscancaptureimportantdifferencesinindividuals’preferencesfortwo(ormore)goods.HereweexaminedtheCobb-Douglasfunction,thelinearfunction(perfectsubstitutes),thefixedpro-portionsfunction(perfectcomplements),andtheCESfunction(whichincludestheotherthreeasspecialcases).•Itisasimplemattermathematicallytogeneralizefromtwo-goodexamplestomanygoods.And,asweshallsee,studyingpeoples’choicesamongmanygoodscanyieldmanyinsights.Butthemathematicsofmanygoodsisnotespeciallyintuitive,sowewillprimarilyrelyontwo-goodcasestobuildsuchintuition.106Part2ChoiceandDemand
3.5ThePhilliePhanaticalwayseatshisballparkfranksinaspecialway;heusesafoot-longhotdogtogetherwithpreciselyhalfabun,1ounceofmustard,and2ouncesofpicklerelish.Hisutilityisafunctiononlyofthesefouritemsandanyextraamountofasingleitemwithouttheotherconstituentsisworthless.a.WhatformdoesPP’sutilityfunctionforthesefourgoodshave?b.HowmightwesimplifymattersbyconsideringPP’sutilitytobeafunctionofonlyonegood?Whatisthatgood?c.Supposefoot-longhotdogscost$1.00each,bunscost$0.50each,mustardcosts$0.05perounce,andpicklerelishcosts$0.15perounce.Howmuchdoesthegooddefinedinpart(b)cost?d.Ifthepriceoffoot-longhotdogsincreasesby50percent(to$1.50each),whatisthepercentageincreaseinthepriceofthegood?e.Howwoulda50percentincreaseinthepriceofabunaffectthepriceofthegood?Whyisyouranswerdifferentfrompart(d)?f.Ifthegovernmentwantedtoraise$1.00bytaxingthegoodsthatPPbuys,howshoulditspreadthistaxoverthefourgoodssoastominimizetheutilitycosttoPP?3.6Manyadvertisingslogansseemtobeassertingsomethingaboutpeople’spreferences.Howwouldyoucapturethefollowingsloganswithamathematicalutilityfunction?a.Promisemargarineisjustasgoodasbutter.b.ThingsgobetterwithCoke.c.Youcan’teatjustonePringle’spotatochip.d.KrispyKremeglazeddoughnutsarejustbetterthanDunkin’.e.MillerBrewingadvisesustodrink(beer)“responsibly.”[Whatwould“irresponsible”drinkingbe?]3.7a.Aconsumeriswillingtotrade3unitsofxfor1unitofywhenshehas6unitsofxand5unitsofy.Sheisalsowillingtotradein6unitsofxfor2unitsofywhenshehas12unitsofxand3unitsofy.Sheisindifferentbetweenbundle(6,5)andbundle(12,3).Whatistheutilityfunctionforgoodsxandy?Hint:Whatistheshapeoftheindifferencecurve?b.Aconsumeriswillingtotrade4unitsofxfor1unitofywhensheisconsumingbundle(8,1).Sheisalsowillingtotradein1unitofxfor2unitsofywhensheisconsumingbundle(4,4).Sheisindifferentbetweenthesetwobundles.AssumingthattheutilityfunctionisCobb-DouglasoftheformUðx,yÞ¼xαyβ,whereαandβarepositiveconstants,whatistheutilityfunctionforthisconsumer?c.Wastherearedundancyofinformationinpart(b)?Ifyes,howmuchistheminimumamountofinformationrequiredinthatquestiontoderivetheutilityfunction?3.8Findutilityfunctionsgiveneachofthefollowingindifferencecurves[definedbyU(⋅)¼C]:a.z¼C1=δxα=δyβ=δ.b.y¼0:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffix24ðx2CÞq0:5x:c.z¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiy44xðx2yCÞp2xy22x:Chapter3PreferencesandUtility107
AnalyticalProblems3.9InitialendowmentsSupposethatapersonhasinitialamountsofthetwogoodsthatprovideutilitytohimorher.Theseinitialamountsaregivenby_xand_y.a.Graphtheseinitialamountsonthisperson’sindifferencecurvemap.b.Ifthispersoncantradexfory(orviceversa)withotherpeople,whatkindsoftradeswouldheorshevoluntarilymake?Whatkindswouldnotbemade?Howdothesetradesrelatetothisperson’sMRSatthepoint(_x,_y)?c.Supposethispersonisrelativelyhappywiththeinitialamountsinhisorherpossessionandwillonlyconsidertradesthatincreaseutilitybyatleastamountk.Howwouldyouillustratethisontheindifferencecurvemap?3.10Cobb-DouglasutilityExample3.3showsthattheMRSfortheCobb-DouglasfunctionUðx,yÞ¼xαyβisgivenbyMRS¼αβyx.a.Doesthisresultdependonwhetherαþβ¼1?Doesthissumhaveanyrelevancetothetheoryofchoice?b.Forcommoditybundlesforwhichy¼x,howdoestheMRSdependonthevaluesofαandβ?Developanintuitiveexplanationofwhy,ifα>β,MRS>1.Illustrateyourargumentwithagraph.c.Supposeanindividualobtainsutilityonlyfromamountsofxandythatexceedminimalsub-sistencelevelsgivenbyx0,y0.Inthiscase,Uðx,yÞ¼ðxx0Þαðyy0Þβ.Isthisfunctionhomothetic?(Forafurtherdiscussion,seetheExtensionstoChapter4.)3.11IndependentmarginalutilitiesTwogoodshaveindependentmarginalutilitiesif∂2U∂y∂x¼∂2U∂x∂y¼0.Showthatifweassumediminishingmarginalutilityforeachgood,thenanyutilityfunctionwithindependentmarginalutilitieswillhaveadiminishingMRS.Provideanexampletoshowthattheconverseofthisstatementisnottrue.3.12CESutilitya.ShowthattheCESfunctionαxδδþβyδδishomothetic.HowdoestheMRSdependontheratioy=x?b.Showthatyourresultsfrompart(a)agreewithourdiscussionofthecasesδ¼1(perfectsubstitutes)andδ¼0(Cobb-Douglas).c.ShowthattheMRSisstrictlydiminishingforallvaluesofδ<1.d.Showthatifx¼y,theMRSforthisfunctiondependsonlyontherelativesizesofαandβ.108Part2ChoiceandDemand
e.CalculatetheMRSforthisfunctionwheny=x¼0:9andy=x¼1:1forthetwocasesδ¼0:5andδ¼1.WhatdoyouconcludeabouttheextenttowhichtheMRSchangesinthevicinityofx¼y?Howwouldyouinterpretthisgeometrically?3.13Thequasi-linearfunctionConsiderthefunctionUðx,yÞ¼xþlny.Thisisafunctionthatisusedrelativelyfrequentlyineco-nomicmodelingasithassomeusefulproperties.a.FindtheMRSofthefunction.Now,interprettheresult.b.Confirmthatthefunctionisquasi-concave.c.Findtheequationforanindifferencecurveforthisfunction.d.Comparethemarginalutilityofxandy.Howdoyouinterpretthesefunctions?Howmightconsumerschoosebetweenxandyastheytrytoincreasetheirutilityby,forexample,consum-ingmorewhentheirincomeincreases?(Wewilllookatthis“incomeeffect”indetailintheChapter5problems.)e.Consideringhowtheutilitychangesasthequantitiesofthetwogoodsincrease,describesomesituationswherethisfunctionmightbeuseful.3.14UtilityfunctionsandpreferencesImaginetwogoodsthat,whenconsumedindividually,giveincreasingutilitywithincreasingamountsconsumed(theyareindividuallymonotonic)butthat,whenconsumedtogether,detractfromtheutilitythattheotheronegives.(Onecouldthinkofmilkandorangejuice,whicharefineindividuallybutwhich,whenconsumedtogether,yieldconsiderabledisutility.)a.Proposeafunctionalformfortheutilityfunctionforthetwogoodsjustdescribed.b.FindtheMRSbetweenthetwogoodswithyourfunctionalform.c.Which(ifany)ofthegeneralassumptionsthatwemakeregardingpreferencesandutilityfunctionsdoesyourfunctionalformviolate?SUGGESTIONSFORFURTHERREADINGAleskerov,Fuad,andBernardMonjardet.UtilityMaximiza-tion,Choice,andPreference.Berlin:Springer-Verlag,2002.Acompletestudyofpreferencetheory.Coversavarietyofthresholdmodelsandmodelsof“context-dependent”decisionmaking.Jehle,G.R.,andP.J.Reny.AdvancedMicroeconomicTheory,2nded.Boston:AddisonWesley/Longman,2001.Chapter2hasagoodproofoftheexistenceofutilityfunctionswhenbasicaxiomsofrationalityhold.Kreps,DavidM.ACourseinMicroeconomicTheory.Princeton,NJ:PrincetonUniversityPress,1990.Chapter1coverspreferencetheoryinsomedetail.Gooddiscussionofquasi-concavity.Kreps,DavidM.NotesontheTheoryofChoice.London:WestviewPress,1988.Gooddiscussionofthefoundationsofpreferencetheory.Mostofthefocusofthebookisonutilityinuncertainsituations.Mas-Colell,Andrea,MichaelD.Whinston,andJerryR.Green.MicroeconomicTheory.NewYork:OxfordUniversityPress,1995.Chapters2and3provideadetaileddevelopmentofpreferencerela-tionsandtheirrepresentationbyutilityfunctions.Stigler,G.“TheDevelopmentofUtilityTheory.”JournalofPoliticalEconomy59,pts.1–2(August/October1950):307–27,373–96.Alucidandcompletesurveyofthehistoryofutilitytheory.Hasmanyinterestinginsightsandasides.Chapter3PreferencesandUtility109
EXTENSIONSSpecialPreferencesTheutilityfunctionconceptisaquitegeneralonethatcanbeadaptedtoalargenumberofspecialcircum-stances.Discoveryofingeniousfunctionalformsthatreflecttheessentialaspectsofsomeproblemcanpro-videanumberofinsightsthatwouldnotbereadilyapparentwithamoreliteraryapproach.Herewelookatfouraspectsofpreferencesthateconomistshavetriedtomodel:(1)thresholdeffects;(2)quality;(3)habitsandaddiction;and(4)second-partypreferences.InChapters7and17,weillustrateanumberofaddi-tionalwaysofcapturingaspectsofpreferences.E3.1ThresholdeffectsThemodelofutilitythatwedevelopedinthischapterimpliesanindividualwillalwaysprefercommoditybun-dleAtobundleB,providedUðAÞ>UðBÞ.TheremaybeeventsthatwillcausepeopletoshiftquicklyfromconsumingbundleAtoconsumingB.Inmanycases,however,suchalightning-quickresponseseemsunlikely.Peoplemayinfactbe“setintheirways”andmayrequirearatherlargechangeincircumstancestochangewhattheydo.Forexample,individualsmaynothaveespeciallystrongopinionsaboutwhatprecisebrandoftoothpastetheychooseandmaystickwithwhattheyknowdespiteaproliferationofnew(andperhapsbetter)brands.Simi-larly,peoplemaystickwithanoldfavoriteTVshoweventhoughithasdeclinedinquality.Onewaytocapturesuchbehavioristoassumeindividualsmakedecisionsasiftheyfacedthresholdsofpreference.Insuchasituation,commoditybundleAmightbechosenoverBonlywhenUðAÞ>UðBÞþε,(i)whereεisthethresholdthatmustbeovercome.Withthisspecification,then,indifferencecurvesmayberatherthickandevenfuzzy,ratherthanthedistinctcontourlinesshowninthischapter.Thresholdmodelsofthistypeareusedextensivelyinmarketing.ThetheorybehindsuchmodelsispresentedindetailinAleskerovandMonjardet(2002).There,theauthorsconsideranum-berofwaysofspecifyingthethresholdsothatitmightdependonthecharacteristicsofthebundlesbeingcon-sideredoronothercontextualvariables.AlternativefuelsVedenov,Duffield,andWetzstein(2006)usethethresholdideatoexaminetheconditionsunderwhichindividualswillshiftfromgasolinetootherfuels(primarilyethanol)forpoweringtheircars.Theauthorspointoutthatthemaindisadvantageofusinggasolineinrecentyearshasbeentheexcessivepricevolatilityoftheproductrelativetootherfuels.Theyconcludethatswitchingtoethanolblendsisefficient(especiallydur-ingperiodsofincreasedgasolinepricevolatility),pro-videdthattheblendsdonotdecreasefuelefficiency.E3.2QualityBecausemanyconsumptionitemsdifferwidelyinqual-ity,economistshaveaninterestinincorporatingsuchdifferencesintomodelsofchoice.Oneapproachissimplytoregarditemsofdifferentqualityastotallyseparategoodsthatarerelativelyclosesubstitutes.Butthisapproachcanbeunwieldybecauseofthelargenumberofgoodsinvolved.Analternativeap-proachfocusesonqualityasadirectitemofchoice.Utilitymightinthiscasebereflectedbyutility¼Uðq,QÞ,(ii)whereqisthequantityconsumedandQisthequalityofthatconsumption.Althoughthisapproachpermitssomeexaminationofquality-quantitytrade-offs,itencountersdifficultywhenthequantityconsumedofacommodity(e.g.,wine)consistsofavarietyofqualities.Qualitymightthenbedefinedasanaverage(seeTheil,11952),butthatapproachmaynotbeappropriatewhenthequalityofnewgoodsischangingrapidly(asinthecaseofpersonalcomputers,forexample).Amoregeneralapproach(originallysuggestedbyLancaster,1971)focusesonawell-definedsetofattributesofgoodsandassumesthatthoseattributesprovideutility.Ifagoodqprovidestwosuchattributes,a1anda2,thenutilitymightbewrittenasutility¼U½q,a1ðqÞ,a2ðqÞ,(iii)andutilityimprovementsmightariseeitherbecausethisindividualchoosesalargerquantityofthegoodorbecauseagivenquantityyieldsahigherlevelofvaluableattributes.PersonalcomputersThisisthepracticefollowedbyeconomistswhostudydemandinsuchrapidlychangingindustriesaspersonal1Theilalsosuggestsmeasuringqualitybylookingatcorrelationsbe-tweenchangesinconsumptionandtheincomeelasticitiesofvariousgoods.110Part2ChoiceandDemand
computers.Inthiscaseitwouldclearlybeincorrecttofocusonlyonthequantityofpersonalcomputerspur-chasedeachyear,sincenewmachinesaremuchbetterthanoldones(and,presumably,providemoreutility).Forexample,Berndt,Griliches,andRappaport(1995)findthatpersonalcomputerqualityhasbeenrisingabout30percentperyearoverarelativelylongperiodoftime,primarilybecauseofimprovedattributessuchasfasterprocessorsorbetterharddrives.Apersonwhospends,say,$2,000forapersonalcomputertodaybuysmuchmoreutilitythandidasimilarconsumer5yearsago.E3.3HabitsandaddictionBecauseconsumptionoccursovertime,thereisthepossibilitythatdecisionsmadeinoneperiodwillaffectutilityinlaterperiods.Habitsareformedwhenindivid-ualsdiscovertheyenjoyusingacommodityinoneperiodandthisincreasestheirconsumptioninsubse-quentperiods.Anextremecaseisaddiction(beittodrugs,cigarettes,orMarxBrothersmovies),wherepastconsumptionsignificantlyincreasestheutilityofpres-entconsumption.Onewaytoportraytheseideasmath-ematicallyistoassumethatutilityinperiodtdependsonconsumptioninperiodtandthetotalofallpriorconsumptionofthehabit-forminggood(say,X):utility¼Utðxt,yt,stÞ,(iv)wherest¼X∞i¼1xti.Inempiricalapplications,however,dataonallpastlevelsofconsumptionusuallydonotexist.Itisthere-forecommontomodelhabitsusingonlydataoncurrentconsumption(xt)andonconsumptioninthepreviousperiod(xt1).Acommonwaytoproceedistoassumethatutilityisgivenbyutility¼Utðxt,ytÞ,(v)wherextissomesimplefunctionofxtandxt1,suchasxt¼xtxt1orxt¼xt=xt1.Suchfunctionsimplythat,ceterisparibus,thehigherisxt1,themorextwillbechoseninthecurrentperiod.ModelinghabitsTheseapproachestomodelinghabitshavebeenap-pliedtoawidevarietyoftopics.StiglerandBecker(1977)usesuchmodelstoexplainwhypeopledevelopa“taste”forgoingtooperasorplayinggolf.Becker,Grossman,andMurphy(1994)adaptthemodelstostudyingcigarettesmokingandotheraddictivebehav-ior.Theyshowthatreductionsinsmokingearlyinlifecanhaveverylargeeffectsoneventualcigarettecon-sumptionbecauseofthedynamicsinindividuals’util-ityfunctions.Whetheraddictivebehavioris“rational”hasbeenextensivelystudiedbyeconomists.Forexam-ple,GruberandKoszegi(2001)showthatsmokingcanbeapproachedasarational,thoughtime-incon-sistent,2choice.E3.4Second-partypreferencesIndividualsclearlycareaboutthewell-beingofotherindividuals.Phenomenasuchasmakingcharitablecon-tributionsormakingbequeststochildrencannotbeunderstoodwithoutrecognizingtheinterdependencethatexistsamongpeople.Second-partypreferencescanbeincorporatedintotheutilityfunctionofpersoni,say,byutility¼Uiðxi,yi,UjÞ,(vi)whereUjistheutilityofsomeoneelse.If∂Ui=∂Uj>0thenthispersonwillengageinaltruisticbehavior,whereasif∂Ui=∂Uj<0thenheorshewilldemonstratethemalevolentbehaviorasso-ciatedwithenvy.Theusualcaseof∂Ui=∂Uj¼0isthensimplyamiddlegroundbetweenthesealternativepreferencetypes.GaryBeckerhasbeenapioneerinthestudyofthesepossibilitiesandhaswrittenonavarietyoftopics,includingthegeneraltheoryofsocialinteractions(1976)andtheimportanceofaltruisminthetheoryofthefamily(1981).EvolutionarybiologyandgeneticsBiologistshavesuggestedaparticularformfortheutilityfunctioninEquationiv,drawnfromthetheoryofgenetics.Inthiscaseutility¼Uiðxi,yiÞþXjrjUj,(vii)whererjmeasuresclosenessofthegeneticrelation-shipbetweenpersoniandpersonj.Forparentsandchildren,forexample,rj¼0:5,whereasforcousinsrj¼0:125.Bergstrom(1996)describesafewoftheconclusionsaboutevolutionarybehaviorthatbiolo-gistshavedrawnfromthisparticularfunctionalform.2Formoreontimeinconsistency,seeChapter17.Chapter3PreferencesandUtility111
ReferencesAleskerov,Fuad,andBernardMonjardet.UtilityMaximi-zation,Choice,andPreference.Berlin:Springer-Verlag,2002.Becker,GaryS.TheEconomicApproachtoHumanBehavior.Chicago:UniversityofChicagoPress,1976.———.ATreatiseontheFamily.Cambridge,MA:HarvardUniversityPress,1981.Becker,GaryS.,MichaelGrossman,andKevinM.Murphy.“AnEmpiricalAnalysisofCigaretteAddiction.”Ameri-canEconomicReview(June1994):396–418.Bergstrom,TheodoreC.“EconomicsinaFamilyWay.”JournalofEconomicLiterature(December1996):1903–34.Berndt,ErnstR.,ZviGriliches,andNealJ.Rappaport.“EconometricEstimatesofPriceIndexesforPersonalComputersinthe1990s.”JournalofEconometrics(July1995):243–68.Gruber,Jonathan,andBotondKoszegi.“IsAddiction‘Rational’?TheoryandEvidence.”QuarterlyJournalofEconomics(November2001):1261–1303.Lancaster,KelvinJ.ConsumerDemand:ANewApproach.NewYork:ColumbiaUniversityPress,1971.Stigler,GeorgeJ.,andGaryS.Becker.“DeGustibusNonEstDisputandum.”AmericanEconomicReview(March1977):76–90.Theil,Henri.“Qualities,Prices,andBudgetEnquiries.”ReviewofEconomicStudies(April1952):129–47.Vedenov,DmitryV.,JamesA.Duffield,andMichaelE.Wetzstein.“EntryofAlternativeFuelsinaVolatileU.S.GasolineMarket.”JournalofAgriculturalandResourceEconomics(April2006):1–13.112Part2ChoiceandDemand
CHAPTER4UtilityMaximizationandChoiceInthischapterweexaminethebasicmodelofchoicethateconomistsusetoexplainindividuals’behavior.Thatmodelassumesthatindividualswhoareconstrainedbylimitedincomeswillbehaveasiftheyareusingtheirpurchasingpowerinsuchawayastoachievethehighestutilitypossible.Thatis,individualsareas-sumedtobehaveasiftheymaximizeutilitysubjecttoabudgetconstraint.Althoughthespecificapplicationsofthismodelarequitevaried,aswewillshow,allofthemarebasedonthesamefundamentalmathematicalmodel,andallarriveatthesamegeneralconclusion:Tomaximizeutility,individualswillchoosebundlesofcommoditiesforwhichtherateoftrade-offbetweenanytwogoods(theMRS)isequaltotheratioofthegoods’marketprices.Marketpricesconveyinformationaboutopportunitycoststoindividuals,andthisin-formationplaysanimportantroleinaffectingthechoicesactuallymade.UtilitymaximizationandlightningcalculationsBeforestartingaformalstudyofthetheoryofchoice,itmaybeappropriatetodisposeoftwocomplaintsnoneconomistsoftenmakeabouttheapproachwewilltake.Firstisthechargethatnorealpersoncanmakethekindsof“lightningcalculations”requiredforutilitymaximization.Accordingtothiscomplaint,whenmovingdownasupermarketaisle,peoplejustgrabwhatisavailablewithnorealpatternorpurposetotheiractions.Economistsarenotpersuadedbythiscomplaint.Theydoubtthatpeoplebehaverandomly(everyone,afterall,isboundbysomesortofbudgetconstraint),andtheyviewthelightningcalculationchargeasmisplaced.Recall,again,Friedman’spoolplayerfromChapter1.Thepoolplayeralsocannotmakethelightningcalculationsrequiredtoplanashotaccordingtothelawsofphysics,butthoselawsstillpredicttheplayer’sbehavior.Sotoo,asweshallsee,theutility-maximizationmodelpredictsmanyaspectsofbehavioreventhoughnoonecarriesaroundacomputerwithhisorherutilityfunctionprogrammedintoit.Tobeprecise,economistsassumethatpeoplebehaveasiftheymadesuchcalculations,sothecomplaintthatthecalculationscannotpossiblybemadeislargelyirrelevant.AltruismandselfishnessAsecondcomplaintagainstourmodelofchoiceisthatitappearstobeextremelyselfish;noone,accordingtothiscomplaint,hassuchsolelyself-centeredgoals.Althougheconomistsareprobablymorereadytoacceptself-interestasamotivatingforcethanareother,moreUtopianthinkers(AdamSmithobserved,“Wearenotreadytosuspectanypersonofbeingdeficientinselfishness”1),thischargeisalsomisplaced.Nothingintheutility-maximizationmodelpreventsindividualsfromderivingsatisfactionfromphilanthropyorgenerally“doinggood.”Theseactivitiesalsocanbeassumedtoprovideutility.Indeed,economistshaveusedtheutility-maximizationmodelextensivelytostudysuchissuesasdonatingtimeandmoney1AdamSmith,TheTheoryofMoralSentiments(1759;reprint,NewRochelle,NY:ArlingtonHouse,1969),p.446.113
tocharity,leavingbequeststochildren,orevengivingblood.Oneneednottakeapositiononwhethersuchactivitiesareselfishorselflesssinceeconomistsdoubtpeoplewouldunder-takethemiftheywereagainsttheirownbestinterests,broadlyconceived.ANINITIALSURVEYThegeneralresultsofourexaminationofutilitymaximizationcanbestatedsuccinctlyasfollows.OPTIMIZATIONPRINCIPLEUtilitymaximizationTomaximizeutility,givenafixedamountofincometospend,anindividualwillbuythosequantitiesofgoodsthatexhausthisorhertotalincomeandforwhichthepsychicrateoftrade-offbetweenanytwogoods(theMRS)isequaltotherateatwhichthegoodscanbetradedonefortheotherinthemarketplace.Thatspendingallone’sincomeisrequiredforutilitymaximizationisobvious.Becauseextragoodsprovideextrautility(thereisnosatiation)andbecausethereisnootheruseforincome,toleaveanyunspentwouldbetofailtomaximizeutility.Throwingmoneyawayisnotautility-maximizingactivity.Theconditionspecifyingequalityoftrade-offratesrequiresabitmoreexplanation.Becausetherateatwhichonegoodcanbetradedforanotherinthemarketisgivenbytheratiooftheirprices,thisresultcanberestatedtosaythattheindividualwillequatetheMRS(ofxfory)totheratioofthepriceofxtothepriceofyðpx=pyÞ.Thisequatingofapersonaltrade-offratetoamarket-determinedtrade-offrateisaresultcommontoallindividualutility-maximizationproblems(andtomanyothertypesofmaximizationproblems).Itwilloccuragainandagainthroughoutthistext.AnumericalillustrationToseetheintuitivereasoningbehindthisresult,assumethatitwerenottruethatanin-dividualhadequatedtheMRStotheratioofthepricesofgoods.Specifically,supposethattheindividual’sMRSisequalto1andthatheorsheiswillingtotrade1unitofxfor1unitofyandremainequallywelloff.Assumealsothatthepriceofxis$2perunitandofyis$1perunit.Itiseasytoshowthatthispersoncanbemadebetteroff.Supposethispersonreducesxconsumptionby1unitandtradesitinthemarketfor2unitsofy.Only1extraunitofywasneededtokeepthispersonashappyasbeforethetrade—thesecondunitofyisanetadditiontowell-being.Therefore,theindividual’sspendingcouldnothavebeenallocatedoptimallyinthefirstplace.AsimilarmethodofreasoningcanbeusedwhenevertheMRSandthepriceratiopx=pydiffer.Theconditionformaximumutilitymustbetheequalityofthesetwomagnitudes.THETWO-GOODCASE:AGRAPHICALANALYSISThisdiscussionseemseminentlyreasonable,butitcanhardlybecalledaproof.Rather,wemustnowshowtheresultinarigorousmannerand,atthesametime,illustrateseveralotherimportantattributesofthemaximizationprocess.Firstwetakeagraphicanalysis;thenwetakeamoremathematicalapproach.BudgetconstraintAssumethattheindividualhasIdollarstoallocatebetweengoodxandgoody.Ifpxisthepriceofgoodxandpyisthepriceofgoody,thentheindividualisconstrainedby114Part2ChoiceandDemand
pxxþpyyI.(4.1)Thatis,nomorethanIcanbespentonthetwogoodsinquestion.ThisbudgetconstraintisshowngraphicallyinFigure4.1.Thispersoncanaffordtochooseonlycombinationsofxandyintheshadedtriangleofthefigure.IfallofIisspentongoodx,itwillbuyI=pxunitsofx.Similarly,ifallisspentony,itwillbuyI=pyunitsofy.Theslopeoftheconstraintiseasilyseentobepx=py.Thisslopeshowshowycanbetradedforxinthemarket.Ifpx¼2andpy¼1,then2unitsofywilltradefor1unitofx.First-orderconditionsforamaximumThisbudgetconstraintcanbeimposedonthisperson’sindifferencecurvemaptoshowtheutility-maximizationprocess.Figure4.2illustratesthisprocedure.TheindividualwouldbeirrationaltochooseapointsuchasA;heorshecangettoahigherutilityleveljustbyspendingmoreofhisorherincome.Theassumptionofnonsatiationimpliesthatapersonshouldspendallofhisorherincomeinordertoreceivemaximumutility.Similarly,byreallocatingexpenditures,theindividualcandobetterthanpointB.PointDisoutofthequestionbecauseincomeisnotlargeenoughtopurchaseD.ItisclearthatthepositionofmaximumutilityisatpointC,wherethecombinationx,yischosen.ThisistheonlypointonindifferencecurveU2thatcanbeboughtwithIdollars;nohigherutilitylevelcanbeFIGURE4.1TheIndividual’sBudgetConstraintforTwoGoodsThosecombinationsofxandythattheindividualcanaffordareshownintheshadedtriangle.If,asweusuallyassume,theindividualprefersmoreratherthanlessofeverygood,theouterboundaryofthistriangleistherelevantconstraintwherealloftheavailablefundsarespenteitheronxorony.Theslopeofthisstraight-lineboundaryisgivenbypx=py.Quantity of x0Quantityof ypyIpxII= pxx+ pyyChapter4UtilityMaximizationandChoice115
bought.Cisapointoftangencybetweenthebudgetconstraintandtheindifferencecurve.Therefore,atCwehaveslopeofbudgetconstraint¼pxpy¼slopeofindifferencecurve¼dydxU¼constant(4.2)orpxpy¼dydxU¼constant¼MRSðofxforyÞ.(4.3)Ourintuitiveresultisproved:forautilitymaximum,allincomeshouldbespentandtheMRSshouldequaltheratioofthepricesofthegoods.Itisobviousfromthediagramthatifthisconditionisnotfulfilled,theindividualcouldbemadebetteroffbyreallocatingexpenditures.Second-orderconditionsforamaximumThetangencyruleisonlyanecessaryconditionforamaximum.Toseethatitisnotasufficientcondition,considertheindifferencecurvemapshowninFigure4.3.Here,apointFIGURE4.2AGraphicalDemonstrationofUtilityMaximizationPointCrepresentsthehighestutilitylevelthatcanbereachedbytheindividual,giventhebudgetconstraint.Thecombinationx,yisthereforetherationalwayfortheindividualtoallocatepurchasingpower.Onlyforthiscombinationofgoodswilltwoconditionshold:Allavailablefundswillbespent,andtheindividual’spsychicrateoftrade-off(MRS)willbeequaltotherateatwhichthegoodscanbetradedinthemarketðpx=pyÞ.Quantity of xQuantity of yU1U1U2U3U2U30I= pxx+ pyyBDCAy*x*116Part2ChoiceandDemand
oftangencyðCÞisinferiortoapointofnontangencyðBÞ.Indeed,thetruemaximumisatanotherpointoftangencyðAÞ.Thefailureofthetangencyconditiontoproduceanunam-biguousmaximumcanbeattributedtotheshapeoftheindifferencecurvesinFigure4.3.IftheindifferencecurvesareshapedlikethoseinFigure4.2,nosuchproblemcanarise.Butwehavealreadyshownthat“normally”shapedindifferencecurvesresultfromtheassumptionofadiminishingMRS.Therefore,iftheMRSisassumedtobediminishing,theconditionoftangencyisbothanecessaryandsufficientconditionforamaximum.2Withoutthisassump-tion,onewouldhavetobecarefulinapplyingthetangencyrule.CornersolutionsTheutility-maximizationproblemillustratedinFigure4.2resultedinan“interior”maxi-mum,inwhichpositiveamountsofbothgoodswereconsumed.Insomesituationsindivid-uals’preferencesmaybesuchthattheycanobtainmaximumutilitybychoosingtoconsumeFIGURE4.3ExampleofanIndifferenceCurveMapforWhichtheTangencyConditionDoesNotEnsureaMaximumIfindifferencecurvesdonotobeytheassumptionofadiminishingMRS,notallpointsoftangency(pointsforwhichMRSpx=pyÞmaytrulybepointsofmaximumutility.Inthisexample,tangencypointCisinferiortomanyotherpointsthatcanalsobepurchasedwiththeavailablefunds.Inorderthatthenecessaryconditionsforamaximum(thatis,thetangencyconditions)alsobesufficient,oneusuallyassumesthattheMRSisdiminishing;thatis,theutilityfunctionisstrictlyquasi-concave.Quantity of xQuantity of yU1U3U2U1U2U3ACBI= pxx+ pyy2Inmathematicalterms,becausetheassumptionofadiminishingMRSisequivalenttoassumingquasi-concavity,thenecessaryconditionsforamaximumsubjecttoalinearconstraintarealsosufficient,asweshowedinChapter2.Chapter4UtilityMaximizationandChoice117
noamountofoneofthegoods.Ifsomeonedoesnotlikehamburgersverymuch,thereisnoreasontoallocateanyincometotheirpurchase.ThispossibilityisreflectedinFigure4.4.There,utilityismaximizedatE,wherex¼xandy¼0,soanypointonthebudgetconstraintwherepositiveamountsofyareconsumedyieldsalowerutilitythandoespointE.NoticethatatEthebudgetconstraintisnotpreciselytangenttotheindifferencecurveU2.Instead,attheoptimalpointthebudgetconstraintisflatterthanU2,indicatingthattherateatwhichxcanbetradedforyinthemarketislowerthantheindividual’spsychictrade-offrate(theMRS).Atprevailingmarketpricestheindividualismorethanwillingtotradeawayytogetextrax.Becauseitisimpossibleinthisproblemtoconsumenegativeamountsofy,however,thephysicallimitforthisprocessistheX-axis,alongwhichpurchasesofyare0.Hence,asthisdiscussionmakesclear,itisnecessarytoamendthefirst-orderconditionsforautilitymaximumabittoallowforcornersolutionsofthetypeshowninFigure4.4.Followingourdiscussionofthegeneraln-goodcase,wewillusethemathematicsfromChapter2toshowhowthiscanbeaccomplished.THEn-GOODCASETheresultsderivedgraphicallyinthecaseoftwogoodscarryoverdirectlytothecaseofngoods.Againitcanbeshownthatforaninteriorutilitymaximum,theMRSbetweenanytwogoodsmustequaltheratioofthepricesofthesegoods.Tostudythismoregeneralcase,however,itisbesttousesomemathematics.FIGURE4.4CornerSolutionforUtilityMaximizationWiththepreferencesrepresentedbythissetofindifferencecurves,utilitymaximizationoccursatE,where0amountsofgoodyareconsumed.Thefirst-orderconditionsforamaximummustbemodifiedsomewhattoaccommodatethispossibility.Quantity of xQuantityof yU3U1Ex*U2118Part2ChoiceandDemand
First-orderconditionsWithngoods,theindividual’sobjectiveistomaximizeutilityfromthesengoods:utility¼Uðx1,x2,…,xnÞ,(4.4)subjecttothebudgetconstraint3I¼p1x1þp2x2þ…þpnxn(4.5)orIp1x1p2x2…pnxn¼0.(4.6)FollowingthetechniquesdevelopedinChapter2formaximizingafunctionsubjecttoaconstraint,wesetuptheLagrangianexpressionℒ¼Uðx1,x2,…,xnÞþλðIp1x1p2x2…pnxnÞ.(4.7)Settingthepartialderivativesofℒ(withrespecttox1,x2,…,xnandλ)equalto0yieldsnþ1equationsrepresentingthenecessaryconditionsforaninteriormaximum:∂ℒ∂x1¼∂U∂x1λp1¼0,∂ℒ∂x2¼∂U∂x2λp2¼0,...∂ℒ∂xn¼∂U∂xnλpn¼0,∂ℒ∂λ¼Ip1x1p2x2…pnxn¼0.(4.8)Thesenþ1equationscan,inprinciple,besolvedfortheoptimalx1,x2,…,xnandforλ(seeExamples4.1and4.2tobeconvincedthatsuchasolutionispossible).Equations4.8arenecessarybutnotsufficientforamaximum.Thesecond-ordercondi-tionsthatensureamaximumarerelativelycomplexandmustbestatedinmatrixterms(seetheExtensionstoChapter2).However,theassumptionofstrictquasi-concavity(adimin-ishingMRSinthetwo-goodcase)issufficienttoensurethatanypointobeyingEquations4.8isinfactatruemaximum.Implicationsoffirst-orderconditionsThefirst-orderconditionsrepresentedbyEquations4.8canberewritteninavarietyofinterestingways.Forexample,foranytwogoods,xiandxj,wehave∂U=∂xi∂U=∂xj¼pipj.(4.9)InChapter3weshowedthattheratioofthemarginalutilitiesoftwogoodsisequaltothemarginalrateofsubstitutionbetweenthem.Therefore,theconditionsforanoptimalallo-cationofincomebecomeMRSðxiforxjÞ¼pipj.(4.10)Thisisexactlytheresultderivedgraphicallyearlierinthischapter;tomaximizeutility,theindividualshouldequatethepsychicrateoftrade-offtothemarkettrade-offrate.3Again,thebudgetconstrainthasbeenwrittenasanequalitybecause,giventheassumptionofnonsatiation,itisclearthattheindividualwillspendallavailableincome.Chapter4UtilityMaximizationandChoice119
InterpretingtheLagrangianmultiplierAnotherresultcanbederivedbysolvingEquations4.8forλ:λ¼∂U=∂x1p1¼∂U=∂x2p2¼…¼∂U=∂xnpn(4.11)orλ¼MUx1p1¼MUx2p2¼…¼MUxnpn.Theseequationsstatethat,attheutility-maximizingpoint,eachgoodpurchasedshouldyieldthesamemarginalutilityperdollarspentonthatgood.Eachgoodthereforeshouldhaveanidentical(marginal)benefit-to-(marginal)-costratio.Ifthiswerenottrue,onegoodwouldpromisemore“marginalenjoymentperdollar”thansomeothergood,andfundswouldnotbeoptimallyallocated.Althoughthereaderisagainwarnedagainsttalkingveryconfidentlyaboutmarginalutility,whatEquation4.11saysisthatanextradollarshouldyieldthesame“additionalutility”nomatterwhichgooditisspenton.ThecommonvalueforthisextrautilityisgivenbytheLagrangianmultiplierfortheconsumer’sbudgetconstraint(thatis,byλ).Conse-quently,λcanberegardedasthemarginalutilityofanextradollarofconsumptionexpendi-ture(themarginalutilityof“income”).Onefinalwaytorewritethenecessaryconditionsforamaximumispi¼MUxiλ(4.12)foreverygoodithatisbought.Tointerpretthisequation,considerasituationwhereaperson’smarginalutilityofincome(λ)isconstantoversomerange.ThenvariationsinthepriceheorshemustpayforgoodiðpiÞaredirectlyproportionaltotheextrautilityderivedfromthatgood.Atthemargin,therefore,thepriceofagoodreflectsanindividual’swillingnesstopayforonemoreunit.Thisisaresultofconsiderableimportanceinappliedwelfareeconomicsbecausewillingnesstopaycanbeinferredfrommarketreactionstoprices.InChapter5wewillseehowthisinsightcanbeusedtoevaluatethewelfareeffectsofpricechangesand,inlaterchapters,wewillusethisideatodiscussavarietyofquestionsabouttheefficiencyofresourceallocation.CornersolutionsThefirst-orderconditionsofEquations4.8holdexactlyonlyforinteriormaximaforwhichsomepositiveamountofeachgoodispurchased.AsdiscussedinChapter2,whencornersolutions(suchasthoseillustratedinFigure4.4)arise,theconditionsmustbemodifiedslightly.4Inthiscase,Equations4.8become∂ℒ∂xi¼∂U∂xiλpi0ði¼1,…,nÞ(4.13)and,if∂ℒ∂xi¼∂U∂xiλpi<0,(4.14)thenxi¼0.(4.15)4Formally,theseconditionsarecalledthe“Kuhn-Tucker”conditionsfornonlinearprogramming.120Part2ChoiceandDemand
Tointerprettheseconditions,wecanrewriteEquation4.14aspi>∂U=∂xiλ¼MUxiλ.(4.16)Hence,theoptimalconditionsareasbefore,exceptthatanygoodwhosepriceðpiÞexceedsitsmarginalvaluetotheconsumer(MUxi=λ)willnotbepurchased(xi¼0).Thus,themathematicalresultsconformtothecommonsenseideathatindividualswillnotpurchasegoodsthattheybelievearenotworththemoney.Althoughcornersolutionsdonotprovideamajorfocusforouranalysisinthisbook,thereadershouldkeepinmindthepossibilitiesforsuchsolutionsarisingandtheeconomicinterpretationthatcanbeattachedtotheoptimalconditionsinsuchcases.EXAMPLE4.1Cobb-DouglasDemandFunctionsAsweshowedinChapter3,theCobb-DouglasutilityfunctionisgivenbyUðx,yÞ¼xαyβ,(4.17)where,forconvenience,5weassumeαþβ¼1.Wecannowsolvefortheutility-maximizingvaluesofxandyforanyprices(px,py)andincome(I).SettinguptheLagrangianexpressionℒ¼xαyβþλðIpxxpyyÞ(4.18)yieldsthefirst-orderconditions∂ℒ∂x¼αxα1yβλpx¼0,∂ℒ∂y¼βxαyβ1λpy¼0,∂ℒ∂λ¼Ipxxpyy¼0.(4.19)Takingtheratioofthefirsttwotermsshowsthatαyβx¼pxpy,(4.20)orpyy¼βαpxx¼1ααpxx,(4.21)wherethefinalequationfollowsbecauseαþβ¼1.Substitutionofthisfirst-orderconditioninEquation4.21intothebudgetconstraintgivesI¼pxxþpyy¼pxxþ1ααpxx¼pxx1þ1αα¼1αpxx;(4.22)solvingforxyieldsx¼αIpx,(4.23)(continued)5NoticethattheexponentsintheCobb-Douglasutilityfunctioncanalwaysbenormalizedtosumto1becauseU1=ðαþβÞisamonotonictransformation.Chapter4UtilityMaximizationandChoice121
EXAMPLE4.1CONTINUEDandasimilarsetofmanipulationswouldgivey¼βIpy.(4.24)TheseresultsshowthatanindividualwhoseutilityfunctionisgivenbyEquation4.17willalwayschoosetoallocateαproportionofhisorherincometobuyinggoodx(i.e.,pxx=I¼α)andβproportiontobuyinggoodyðpyy=I¼βÞ.AlthoughthisfeatureoftheCobb-Douglasfunctionoftenmakesitveryeasytoworkoutsimpleproblems,itdoessuggestthatthefunctionhaslimitsinitsabilitytoexplainactualconsumptionbehavior.Becausetheshareofincomedevotedtoparticulargoodsoftenchangessignificantlyinresponsetochangingeconomicconditions,amoregeneralfunctionalformmayprovideinsightsnotprovidedbytheCobb-Douglasfunction.WeillustrateafewpossibilitiesinExample4.2,andthegeneraltopicofbudgetsharesistakenupinmoredetailintheExtensionstothischapter.Numericalexample.First,however,let’slookataspecificnumericalexamplefortheCobb-Douglascase.Supposethatxsellsfor$1andysellsfor$4andthattotalincomeis$8.Succinctlythen,assumethatpx¼1,py¼4,I¼8.Supposealsothatα¼β¼0:5sothatthisindividualsplitshisorherincomeequallybetweenthesetwogoods.NowthedemandEquations4.23and4.24implyx¼αI=px¼0:5I=px¼0:5ð8Þ=1¼4,y¼βI=py¼0:5I=py¼0:5ð8Þ=4¼1,(4.25)and,attheseoptimalchoices,utility¼x0:5y0:5¼ð4Þ0:5ð1Þ0:5¼2.(4.26)NoticealsothatwecancomputethevaluefortheLagrangianmultiplierassociatedwiththisincomeallocationbyusingEquation4.19:λ¼αxα1yβ=px¼0:5ð4Þ0:5ð1Þ0:5=1¼0:25.(4.27)Thisvalueimpliesthateachsmallchangeinincomewillincreaseutilitybyaboutone-fourthofthatamount.Suppose,forexample,thatthispersonhad1percentmoreincome($8.08).Inthiscaseheorshewouldchoosex¼4:04andy¼1:01,andutilitywouldbe4:040:5⋅1:010:5¼2:02.Hence,a$0.08increaseinincomeincreasesutilityby0.02,aspredictedbythefactthatλ¼0:25.QUERY:WouldachangeinpyaffectthequantityofxdemandedinEquation4.23?Explainyouranswermathematically.Alsodevelopanintuitiveexplanationbasedonthenotionthattheshareofincomedevotedtogoodyisgivenbytheparameteroftheutilityfunction,β.EXAMPLE4.2CESDemandToillustratecasesinwhichbudgetsharesareresponsivetoeconomiccircumstances,let’slookatthreespecificexamplesoftheCESfunction.Case1:δ¼0:5.Inthiscase,utilityisUðx,yÞ¼x0:5þy0:5.(4.28)122Part2ChoiceandDemand
SettinguptheLagrangianexpressionℒ¼x0:5þy0:5þλðIpxxpyyÞ(4.29)yieldsthefollowingfirst-orderconditionsforamaximum:∂ℒ=∂x¼0:5×0:5λpx¼0,∂ℒ=∂y¼0:5y0:5λpy¼0,∂ℒ=∂λ¼Ipxxpyy¼0.(4.30)Divisionofthefirsttwooftheseshowsthatðy=xÞ0:5¼px=py.(4.31)Bysubstitutingthisintothebudgetconstraintanddoingsomemessyalgebraicmanipulation,wecanderivethedemandfunctionsassociatedwiththisutilityfunction:x¼I=px½1þðpx=pyÞ,(4.32)y¼I=py½1þðpy=pxÞ.(4.33)Priceresponsiveness.Inthesedemandfunctionsnoticethattheshareofincomespenton,say,goodx—thatis,pxx=I¼1=½1þðpx=pyÞ—isnotaconstant;itdependsonthepriceratiopx=py.Thehigheristherelativepriceofx,thesmallerwillbetheshareofincomespentonthatgood.Inotherwords,thedemandforxissoresponsivetoitsownpricethatariseinthepricereducestotalspendingonx.ThatthedemandforxisverypriceresponsivecanalsobeillustratedbycomparingtheimpliedexponentonpxinthedemandfunctiongivenbyEquation4.32(2)tothatfromEquation4.23(1).InChapter5wewilldiscussthisobservationmorefullywhenweexaminetheelasticityconceptindetail.Case2:δ¼1.Alternatively,let’slookatademandfunctionwithlesssubstitutability6thantheCobb-Douglas.Ifδ¼1,theutilityfunctionisgivenbyUðx,yÞ¼x1y1,(4.34)anditiseasytoshowthatthefirst-orderconditionsforamaximumrequirey=x¼ðpx=pyÞ0:5.(4.35)Again,substitutionofthisconditionintothebudgetconstraint,togetherwithsomemessyalgebra,yieldsthedemandfunctionsx¼I=px½1þðpy=pxÞ0:5,y¼I=py½1þðpx=pyÞ0:5.(4.36)Thatthesedemandfunctionsarelesspriceresponsivecanbeseenintwoways.First,nowtheshareofincomespentongoodx—thatis,pxx=I¼1=½1þðpy=pxÞ0:5—respondspositivelytoincreasesinpx.Asthepriceofxrises,thisindividualcutsbackonlymodestlyongoodx,sototalspendingonthatgoodrises.ThatthedemandfunctionsinEquations4.36arelesspriceresponsivethantheCobb-Douglasisalsoillustratedbytherelativelysmallexponentsofeachgood’sownpriceð0:5Þ.(continued)6Onewaytomeasuresubstitutabilityisbytheelasticityofsubstitution,whichfortheCESfunctionisgivenbyσ¼1=ð1δÞ.Hereδ¼0:5impliesσ¼2,δ¼0(theCobb-Douglas)impliesσ¼1,andδ¼1impliesσ¼0:5.SeealsothediscussionoftheCESfunctioninconnectionwiththetheoryofproductioninChapter9.Chapter4UtilityMaximizationandChoice123
EXAMPLE4.2CONTINUEDCase3:δ¼∞.Thisistheimportantcaseinwhichxandymustbeconsumedinfixedproportions.Suppose,forexample,thateachunitofymustbeconsumedtogetherwithexactly4unitsofx.TheutilityfunctionthatrepresentsthissituationisUðx,yÞ¼minðx,4yÞ.(4.37)Inthissituation,autility-maximizingpersonwillchooseonlycombinationsofthetwogoodsforwhichx¼4y;thatis,utilitymaximizationimpliesthatthispersonwillchoosetobeatavertexofhisorherL-shapedindifferencecurves.SubstitutingthisconditionintothebudgetconstraintyieldsI¼pxxþpyy¼pxxþpyx4¼ðpxþ0:25pyÞx.(4.38)Hencex¼Ipxþ0:25py,(4.39)andsimilarsubstitutionsyieldy¼I4pxþpy.(4.40)Inthiscase,theshareofaperson’sbudgetdevotedto,say,goodxrisesrapidlyasthepriceofxincreasesbecausexandymustbeconsumedinfixedproportions.Forexample,ifweusethevaluesassumedinExample4.1(px¼1,py¼4,I¼8),Equations4.39and4.40wouldpredictx¼4,y¼1,and,asbefore,halfoftheindividual’sincomewouldbespentoneachgood.Ifweinsteadusepx¼2,py¼4,andI¼8thenx¼8=3,y¼2=3,andthispersonspendstwothirds½pxx=I¼ð2⋅8=3Þ=8¼2=3ofhisorherincomeongoodx.Tryingafewothernumberssuggeststhattheshareofincomedevotedtogoodxapproaches1asthepriceofxincreases.7QUERY:DochangesinincomeaffectexpendituresharesinanyoftheCESfunctionsdiscussedhere?Howisthebehaviorofexpendituresharesrelatedtothehomotheticnatureofthisfunction?INDIRECTUTILITYFUNCTIONExamples4.1and4.2illustratetheprinciplethatitisoftenpossibletomanipulatethefirst-orderconditionsforaconstrainedutility-maximizationproblemtosolvefortheoptimalvaluesofx1,x2,…,xn.Theseoptimalvaluesingeneralwilldependonthepricesofallthegoodsandontheindividual’sincome.Thatis,x1¼x1ðp1,p2,…,pn,IÞ,x2¼x2ðp1,p2,…,pn,IÞ,…xn¼xnðp1,p2,…,pn,IÞ.(4.41)Inthenextchapterwewillanalyzeinmoredetailthissetofdemandfunctions,whichshowthedependenceofthequantityofeachxidemandedonp1,p2,…,pnandI.Hereweuse7TheserelationshipsfortheCESfunctionarepursuedinmoredetailinProblem4.9andinExtensionE4.3.124Part2ChoiceandDemand
theoptimalvaluesofthex’sfromEquations4.42tosubstituteintheoriginalutilityfunctiontoyieldmaximumutility¼Uðx1,x2,…,xnÞ(4.42)¼Vðp1,p2,…,pn,IÞ.(4.43)Inwords:becauseoftheindividual’sdesiretomaximizeutilitygivenabudgetconstraint,theoptimallevelofutilityobtainablewilldependindirectlyonthepricesofthegoodsbeingboughtandtheindividual’sincome.ThisdependenceisreflectedbytheindirectutilityfunctionV.Ifeitherpricesorincomeweretochange,thelevelofutilitythatcouldbeattainedwouldalsobeaffected.Sometimes,inbothconsumertheoryandmanyothercontexts,itispossibletousethisindirectapproachtostudyhowchangesineconomiccircumstancesaffectvariouskindsofoutcomes,suchasutilityor(laterinthisbook)firms’costs.THELUMPSUMPRINCIPLEManyeconomicinsightsstemfromtherecognitionthatutilityultimatelydependsontheincomeofindividualsandonthepricestheyface.Oneofthemostimportantoftheseistheso-calledlumpsumprinciplethatillustratesthesuperiorityoftaxesonaperson’sgeneralpurchasingpowertotaxesonspecificgoods.Arelatedinsightisthatgeneralincomegrantstolow-incomepeoplewillraiseutilitymorethanwillasimilaramountofmoneyspentsubsidizingspecificgoods.Theintuitionbehindthisresultderivesdirectlyfromtheutility-maximizationhypothesis;anincometaxorsubsidyleavestheindividualfreetodecidehowtoallocatewhateverfinalincomeheorshehas.Ontheotherhand,taxesorsubsidiesonspecificgoodsbothchangeaperson’spurchasingpoweranddistorthisorherchoicesbecauseoftheartificialpricesincorporatedinsuchschemes.Hence,generalin-cometaxesandsubsidiesaretobepreferredifefficiencyisanimportantcriterioninsocialpolicy.ThelumpsumprincipleasitappliestotaxationisillustratedinFigure4.5.InitiallythispersonhasanincomeofIandischoosingtoconsumethecombinationx,y.Ataxongoodxwouldraiseitsprice,andtheutility-maximizingchoicewouldshifttocombinationx1,y1.Taxcollectionswouldbet⋅x1(wheretisthetaxrateimposedongoodx).Alternatively,anincometaxthatshiftedthebudgetconstraintinwardtoI0wouldalsocollectthissameamountofrevenue.8ButtheutilityprovidedbytheincometaxðU2ÞexceedsthatprovidedbythetaxonxaloneðU1Þ.Hence,wehaveshownthattheutilityburdenoftheincometaxissmaller.Asimilarargumentcanbeusedtoillustratethesuperiorityofincomegrantstosubsidiesonspecificgoods.EXAMPLE4.3IndirectUtilityandtheLumpSumPrincipleInthisexampleweusethenotionofanindirectutilityfunctiontoillustratethelumpsumprincipleasitappliestotaxation.Firstwehavetoderiveindirectutilityfunctionsfortwoillustrativecases.(continued)8BecauseI¼ðpxþtÞx1þpyy1,wehaveI0¼Itx1¼pxx1þpyy1,whichshowsthatthebudgetconstraintwithanequal-sizeincometaxalsopassesthroughthepointx1,y1.Chapter4UtilityMaximizationandChoice125
EXAMPLE4.3CONTINUEDCase1:Cobb-Douglas.InExample4.1weshowedthat,fortheCobb-Douglasutilityfunctionwithα¼β¼0:5,optimalpurchasesarex¼I2px,y¼I2py⋅(4.44)SotheindirectutilityfunctioninthiscaseisVðpx,py,IÞ¼Uðx,yÞ¼ðxÞ0:5ðyÞ0:5¼I2p0:5xp0:5y.Noticethatwhenpx¼1,py¼4,andI¼8wehaveV¼8=ð2⋅1⋅2Þ¼2,whichistheutilitythatwecalculatedbeforeforthissituation.Case2:Fixedproportions.InthethirdcaseofExample4.2wefoundthatx¼Ipxþ0:25py,y¼I4pxþpy⋅(4.46)So,inthiscaseindirectutilityisgivenbyVðpx,py,IÞ¼minðx,4yÞ¼x¼Ipxþ0:25py¼4y¼44pxþpy¼Ipxþ0:25py;(4.47)withpx¼1,py¼4,andI¼8,indirectutilityisgivenbyV¼4,whichiswhatwecalcu-latedbefore.Thelumpsumprinciple.ConsiderfirstusingtheCobb-Douglascasetoillustratethelumpsumprinciple.Supposethatataxof$1wereimposedongoodx.Equation4.45showsthatindirectutilityinthiscasewouldfallfrom2to1:41½¼8=ð2⋅20:5⋅2Þ.Becausethispersonchoosesx¼2withthetax,totaltaxcollectionswillbe$2.Anequal-revenueincometaxwouldthereforereducenetincometo$6,andindirectutilitywouldbe1:5½¼6=ð2⋅1⋅2Þ.Sothein-cometaxisaclearimprovementoverthecasewherexaloneistaxed.Thetaxongoodxreducesutilityfortworeasons:itreducesaperson’spurchasingpoweranditbiaseshisorherchoicesawayfromgoodx.Withincometaxation,onlythefirsteffectisfeltandsothetaxismoreefficient.9Thefixed-proportionscasesupportsthisintuition.Inthatcase,a$1taxongoodxwouldreduceindirectutilityfrom4to8=3½¼8=ð2þ1Þ.Inthiscasex¼8=3andtaxcollectionswouldbe$8=3.Anincometaxthatcollected$8=3wouldleavethisconsumerwith$16=3innetincome,andthatincomewouldyieldanindirectutilityofV¼8=3½¼ð16=3Þ=ð1þ1Þ.Henceafter-taxutilityisthesameunderboththeexciseandincometaxes.Thereasonthelumpsumresultdoesnotholdinthiscaseisthatwithfixed-proportionsutility,theexcisetaxdoesnotdistortchoicesbecausepreferencesaresorigid.QUERY:Bothoftheindirectutilityfunctionsillustratedhereshowthatadoublingofincomeandallpriceswouldleaveindirectutilityunchanged.Explainwhyyouwouldexpectthistobeapropertyofallindirectutilityfunctions.9Thisdiscussionassumesthattherearenoincentiveeffectsofincometaxation—probablynotaverygoodassumption.126Part2ChoiceandDemand
EXPENDITUREMINIMIZATIONInChapter2wepointedoutthatmanyconstrainedmaximumproblemshaveassociated“dual”constrainedminimumproblems.Forthecaseofutilitymaximization,theassociateddualminimizationproblemconcernsallocatingincomeinsuchawayastoachieveagivenutilitylevelwiththeminimalexpenditure.Thisproblemisclearlyanalogoustotheprimaryutility-maximizationproblem,butthegoalsandconstraintsoftheproblemshavebeenreversed.Figure4.6illustratesthisdualexpenditure-minimizationproblem.There,theindividualmustattainutilitylevelU2;thisisnowtheconstraintintheproblem.Threepossibleexpenditureamounts(E1,E2,andE3)areshownasthree“budgetconstraint”linesinthefigure.ExpenditurelevelE1isclearlytoosmalltoachieveU2,henceitcannotsolvethedualproblem.WithexpendituresgivenbyE3,theindividualcanreachU2(ateitherofthetwopointsBorC),butthisisnottheminimalexpenditurelevelrequired.Rather,E2clearlyprovidesjustenoughtotalexpenditurestoreachU2(atpointA),andthisisinfactthesolutiontothedualproblem.BycomparingFigures4.2and4.6,itisobviousthatboththeprimaryutility-maximizationapproachandthedualexpenditure-minimizationapproachyieldthesamesolutionðx,yÞ;theyaresimplyalternativewaysofviewingthesameprocess.Oftentheexpenditure-minimizationapproachismoreuseful,however,becauseexpendituresaredirectlyobservable,whereasutilityisnot.FIGURE4.5TheLumpSumPrincipleofTaxationAtaxongoodxwouldshifttheutility-maximizingchoicefromx,ytox1,y1.AnincometaxthatcollectedthesameamountwouldshiftthebudgetconstrainttoI0.UtilitywouldbehigherðU2ÞwiththeincometaxthanwiththetaxonxaloneðU1Þ.Quantity of xQuantityof yy1U1U2U3l′lx1x2x*y2y*Chapter4UtilityMaximizationandChoice127
AmathematicalstatementMoreformally,theindividual’sdualexpenditure-minimizationproblemistochoosex1,x2,…,xnsoastominimizetotalexpenditures¼E¼p1x1þp2x2þ…þpnxn,(4.48)subjecttotheconstraintutility¼_U¼Uðx1,x2,…,xnÞ.(4.49)Theoptimalamountsofx1,x2,…,xnchoseninthisproblemwilldependonthepricesofthevariousgoodsðp1,p2,…,pnÞandontherequiredutilitylevel_U2.Ifanyofthepricesweretochangeoriftheindividualhadadifferentutility“target,”thenanothercommoditybundlewouldbeoptimal.Thisdependencecanbesummarizedbyanex-penditurefunction.DEFINITIONExpenditurefunction.Theindividual’sexpenditurefunctionshowstheminimalexpendi-turesnecessarytoachieveagivenutilitylevelforaparticularsetofprices.Thatis,minimalexpenditures¼Eðp1,p2,…,pn,UÞ.(4.50)Thisdefinitionshowsthattheexpenditurefunctionandtheindirectutilityfunctionareinversefunctionsofoneanother(compareEquations4.43and4.50).BothdependonFIGURE4.6TheDualExpenditure-MinimizationProblemThedualoftheutility-maximizationproblemistoattainagivenutilitylevelðU2Þwithminimalexpenditures.AnexpenditurelevelofE1doesnotpermitU2tobereached,whereasE3providesmorespendingpowerthanisstrictlynecessary.WithexpenditureE2,thispersoncanjustreachU2byconsumingxandy.Quantity of xQuantityof yBE3E2U2E1CAx*y*128Part2ChoiceandDemand
marketpricesbutinvolvedifferentconstraints(incomeorutility).Inthenextchapterwewillseehowthisrelationshipisquiteusefulinallowingustoexaminethetheoryofhowindividualsrespondtopricechanges.First,however,let’slookattwoexpenditurefunctions.EXAMPLE4.4TwoExpenditureFunctionsTherearetwowaysonemightcomputeanexpenditurefunction.Thefirst,moststraight-forwardmethodwouldbetostatetheexpenditure-minimizationproblemdirectlyandapplytheLagrangiantechnique.Someoftheproblemsattheendofthischapteraskyoutodopreciselythat.Here,however,wewilladoptamorestreamlinedprocedurebytakingadvantageoftherelationshipbetweenexpenditurefunctionsandindirectutilityfunc-tions.Becausethesetwofunctionsareinversesofeachother,calculationofonegreatlyfaci-litatesthecalculationoftheother.WehavealreadycalculatedindirectutilityfunctionsfortwoimportantcasesinExample4.3.Retrievingtherelatedexpenditurefunctionsissimplealgebra.Case1:Cobb-Douglasutility.Equation4.45showsthattheindirectutilityfunctioninthetwo-good,Cobb-DouglascaseisVðpx,py,IÞ¼I2p0:5xp0:5y.(4.51)Ifwenowinterchangetheroleofutility(whichwewillnowtreatasaconstantdenotedbyU)andincome(whichwewillnowterm“expenditures,”E,andtreatasafunctionoftheparametersofthisproblem),thenwehavetheexpenditurefunctionEðpx,py,UÞ¼2p0:5xp0:5yU.(4.52)Checkingthisagainstourformerresults,nowweuseautilitytargetofU¼2with,again,px¼1andpy¼4.Withtheseparameters,Equation4.52predictsthattherequiredminimalexpendituresare$8ð¼2⋅10:5⋅40:5⋅2Þ.Notsurprisingly,boththeprimalutility-maximizationproblemandthedualexpenditure-minimizationproblemareformallyidentical.Case2:Fixedproportions.Forthefixed-proportionscase,Equation4.47gavetheindirectutilityfunctionasVðpx,py,IÞ¼Ipxþ0:25py.(4.53)Ifweagainswitchtheroleofutilityandexpenditures,wequicklyderivetheexpenditurefunction:Eðpx,py,UÞ¼ðpxþ0:25pyÞU.(4.54)AcheckofthehypotheticalvaluesusedinExample4.3ðpx¼1,py¼4,U¼4Þagainshowsthatitwouldcost$8½¼ð1þ0:25⋅4Þ⋅4toreachtheutilitytargetof4.Compensatingforapricechange.Theseexpenditurefunctionsallowustoinvestigatehowapersonmightbecompensatedforapricechange.Specifically,supposethatthepriceofgoodyweretorisefrom$4to$5.Thiswouldclearlyreduceaperson’sutility,sowemightaskwhatamountofmonetarycompensationwouldmitigatetheharm.Becausetheexpendi-turefunctionallowsutilitytobeheldconstant,itprovidesadirectestimateofthisamount.Specifically,intheCobb-Douglascase,expenditureswouldhavetobeincreasedfrom$8to(continued)Chapter4UtilityMaximizationandChoice129
EXAMPLE4.4CONTINUED$8:94ð¼2⋅1⋅50:5⋅2Þinordertoprovideenoughextrapurchasingpowertopreciselycompensateforthispricerise.Withfixedproportions,expenditureswouldhavetobeincreasedfrom$8to$9tocompensateforthepriceincrease.Hence,thecompensationsareaboutthesameinthesesimplecases.Thereisoneimportantdifferencebetweenthetwoexamples,however.Inthefixed-proportionscase,the$1ofextracompensationsimplypermitsthispersontoreturntohisorherpriorconsumptionbundleðx¼4,y¼1Þ.ThatistheonlywaytorestoreutilitytoU¼4forthisrigidperson.IntheCobb-Douglascase,however,thispersonwillnotusetheextracompensationtoreverttohisorherpriorconsumptionbundle.Instead,utilitymaximizationwillrequirethatthe$8.94beallocatedsothatx¼4:47andy¼0:894.ThiswillstillprovideautilitylevelofU¼2,butthispersonwilleconomizeonthenowmoreexpensivegoody.QUERY:Howshouldapersonbecompensatedforapricedecline?Whatsortofcompensa-tionwouldberequiredifthepriceofgoodyfellfrom$4to$3?PROPERTIESOFEXPENDITUREFUNCTIONSBecauseexpenditurefunctionsarewidelyusedinappliedeconomics,itisusefultounder-standafewofthepropertiessharedbyallsuchfunctions.Herewelookatthreesuchproperties.Allofthesefollowdirectlyfromthefactthatexpenditurefunctionsarebasedonindividualutilitymaximization.1.Homogeneity.ForbothofthefunctionsillustratedinExample4.4,adoublingofallpriceswillpreciselydoublethevalueofrequiredexpenditures.Technically,theseexpenditurefunctionsare“homogeneousofdegreeone”inallprices.10Thisisaquitegeneralpropertyofexpenditurefunctions.Becausetheindividual’sbudgetconstraintislinearinprices,anyproportionalincreaseinbothpricesandpurchasingpowerwillpermitthepersontobuythesameutility-maximizingcommoditybundlethatwaschosenbeforethepricerise.InChapter5wewillseethat,forthisreason,demandfunctionsarehomogenousofdegree0inallpricesandincome.2.Expenditurefunctionsarenondecreasinginprices.Thispropertycanbesuccinctlysummarizedbythemathematicalstatement∂E∂pi0foreverygoodi.(4.55)Thisseemsintuitivelyobvious.Becausetheexpenditurefunctionreportsthemini-mumexpenditurenecessarytoreachagivenutilitylevel,anincreaseinanypricemustincreasethisminimum.Moreformally,supposep1takesontwovalues:pa1andpb1withpb1>pa1,whereallotherpricesareunchangedbetweenstatesaandb.Also,letxbethebundleofgoodspurchasedinstateaandythebundlepurchasedinstateb.Bythedefinitionoftheexpenditurefunction,bothofthesebundlesofgoodsmust10AsdescribedinChapter2,thefunctionfðx1,x2,…,xnÞissaidtobehomogeneousofdegreekiffðtx1,tx2,…,txnÞ¼tkfðx1,x2,…,xnÞ.Inthiscase,k¼1.130Part2ChoiceandDemand
yieldthesametargetutility.Clearlybundleycostsmorewithstate-bpricesthanitwouldwithstate-aprices.Butweknowthatbundlexisthelowest-costwaytoachievethetargetutilitylevelwithstate-aprices.Hence,expendituresonbundleymustbegreaterthanorequaltothoseonbundlex.Similarly,adeclineinapricemustnotincreaseexpenditures.3.Expenditurefunctionsareconcaveinprices.InChapter2wediscussedconcavefunctionsasfunctionsthatalwaysliebelowtangentstothem.Althoughthetechnicalmathematicalconditionsthatdescribesuchfunctionsarecomplicated,itisrelativelysimpletoshowhowtheconceptappliestoexpenditurefunctionsbyconsideringthevariationinasingleprice.Figure4.7showsanindividual’sexpendituresasafunctionofthesingleprice,p1.Attheinitialprice,p1,thisperson’sexpendituresaregivenbyEðp1,…Þ.Nowconsiderpriceshigherorlowerthanp1.Ifthispersoncontinuedtobuythesamebundleofgoods,expenditureswouldincreaseordecreaselinearlyasthispricechanged.ThiswouldgiverisetothepseudoexpenditurefunctionEpseudointhefigure.Thislineshowsalevelofexpendituresthatwouldallowthispersontobuytheoriginalbundleofgoodsdespitethechangingvalueofp1.If,asseemsmorelikely,thispersonadjustedhisorherpurchasesasp1changed,weknow(becauseofexpenditureminimization)thatactualexpenditureswouldbelessthanthesepseudoFIGURE4.7ExpenditureFunctionsAreConcaveinPricesAtp1thispersonspendsEðp1,…Þ.Ifheorshecontinuestobuythesamesetofgoodsasp1changes,thenexpenditureswouldbegivenbyEpseudo.Becausehisorherconsumptionpatternswilllikelychangeasp1changes,actualexpenditureswillbelessthanthis.E(p1, . . .)E(p1, . . .)p1E(p1*, . . .)EpseudoE(p1*, . . .)Chapter4UtilityMaximizationandChoice131
amounts.Hence,theactualexpenditurefunction,E,willlieeverywherebelowEpseudoandthefunctionwillbeconcave.11Theconcavityoftheexpenditurefunctionisausefulpropertyforanumberofapplications,especiallythoserelatedtotheconstruc-tionofindexnumbers(seetheExtensionstoChapter5).PROBLEMS4.1EachdayPaul,whoisinthirdgrade,eatslunchatschool.HelikesonlyTwinkies(t)andsoda(s),andtheseprovidehimautilityofutility¼Uðt,sÞ¼ffiffiffiffitsp.a.IfTwinkiescost$0.10eachandsodacosts$0.25percup,howshouldPaulspendthe$1hismothergiveshiminordertomaximizehisutility?b.IftheschooltriestodiscourageTwinkieconsumptionbyraisingthepriceto$0.40,byhowmuchwillPaul’smotherhavetoincreasehislunchallowancetoprovidehimwiththesamelevelofutilityhereceivedinpart(a)?4.2a.Ayoungconnoisseurhas$600tospendtobuildasmallwinecellar.Sheenjoystwovintagesinparticular:a2001FrenchBordeaux(wF)at$40perbottleandalessexpensive2005Californiavarietalwine(wC)pricedat$8.Ifherutilityis11Oneresultofconcavityisthatfii¼∂2E=∂p2i0.ThisispreciselywhatFigure4.7shows.SUMMARYInthischapterweexploredthebasiceconomicmodelofutilitymaximizationsubjecttoabudgetconstraint.Althoughweapproachedthisprobleminavarietyofways,alloftheseapproachesleadtothesamebasicresult.•Toreachaconstrainedmaximum,anindividualshouldspendallavailableincomeandshouldchooseacom-moditybundlesuchthattheMRSbetweenanytwogoodsisequaltotheratioofthosegoods’marketprices.Thisbasictangencywillresultintheindividualequatingtheratiosofthemarginalutilitytomarketpriceforeverygoodthatisactuallyconsumed.Sucharesultiscommontomostconstrainedoptimizationproblems.•Thetangencyconditionsareonlythefirst-ordercondi-tionsforauniqueconstrainedmaximum,however.Toensurethattheseconditionsarealsosufficient,theindi-vidual’sindifferencecurvemapmustexhibitadiminish-ingMRS.Informalterms,theutilityfunctionmustbestrictlyquasi-concave.•Thetangencyconditionsmustalsobemodifiedtoallowforcornersolutionsinwhichtheoptimallevelofcon-sumptionofsomegoodsiszero.Inthiscase,theratioofmarginalutilitytopriceforsuchagoodwillbebelowthecommonmarginalbenefit–marginalcostratioforgoodsactuallybought.•Aconsequenceoftheassumptionofconstrainedutilitymaximizationisthattheindividual’soptimalchoiceswilldependimplicitlyontheparametersofhisorherbudgetconstraint.Thatis,thechoicesobservedwillbeimplicitfunctionsofallpricesandincome.Utilitywillthereforealsobeanindirectfunctionoftheseparameters.•Thedualtotheconstrainedutility-maximizationprob-lemistominimizetheexpenditurerequiredtoreachagivenutilitytarget.Althoughthisdualapproachyieldsthesameoptimalsolutionastheprimalconstrainedmax-imumproblem,italsoyieldsadditionalinsightintothetheoryofchoice.Specifically,thisapproachleadstoex-penditurefunctionsinwhichthespendingrequiredtoreachagivenutilitytargetdependsongoods’marketprices.Expenditurefunctionsaretherefore,inprinciple,measurable.132Part2ChoiceandDemand
UðwF,wCÞ¼w2=3Fw1=3C,thenhowmuchofeachwineshouldshepurchase?b.Whenshearrivedatthewinestore,ouryoungoenologistdiscoveredthatthepriceoftheFrenchBordeauxhadfallento$20abottlebecauseofadeclineinthevalueofthefranc.IfthepriceoftheCaliforniawineremainsstableat$8perbottle,howmuchofeachwineshouldourfriendpurchasetomaximizeutilityunderthesealteredconditions?c.Explainwhythiswinefancierisbetteroffinpart(b)thaninpart(a).Howwouldyouputamonetaryvalueonthisutilityincrease?4.3a.Onagivenevening,J.P.enjoystheconsumptionofcigars(c)andbrandy(b)accordingtothefunctionUðc,bÞ¼20cc2þ18b3b2.Howmanycigarsandglassesofbrandydoesheconsumeduringanevening?(CostisnoobjecttoJ.P.)b.Lately,however,J.P.hasbeenadvisedbyhisdoctorsthatheshouldlimitthesumofglassesofbrandyandcigarsconsumedto5.Howmanyglassesofbrandyandcigarswillheconsumeunderthesecircumstances?4.4a.Mr.OddeBallenjoyscommoditiesxandyaccordingtotheutilityfunctionUðx,yÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffix2þy2q:MaximizeMr.Ball’sutilityifpx¼$3,py¼$4,andhehas$50tospend.Hint:ItmaybeeasierheretomaximizeU2ratherthanU.Whywon’tthisalteryourresults?b.GraphMr.Ball’sindifferencecurveanditspointoftangencywithhisbudgetconstraint.WhatdoesthegraphsayaboutMr.Ball’sbehavior?Haveyoufoundatruemaximum?4.5Mr.Aderivesutilityfrommartinis(m)inproportiontothenumberhedrinks:UðmÞ¼m.Mr.Aisveryparticularabouthismartinis,however:Heonlyenjoysthemmadeintheexactproportionoftwopartsgin(g)toonepartvermouth(v).Hence,wecanrewriteMr.A’sutilityfunctionasUðmÞ¼Uðg,vÞ¼ming2,v.a.GraphMr.A’sindifferencecurveintermsofgandvforvariouslevelsofutility.Showthat,regardlessofthepricesofthetwoingredients,Mr.Awillneveralterthewayhemixesmartinis.b.Calculatethedemandfunctionsforgandv.c.Usingtheresultsfrompart(b),whatisMr.A’sindirectutilityfunction?d.CalculateMr.A’sexpenditurefunction;foreachlevelofutility,showspendingasafunctionofpgandpv.Hint:Becausethisprobleminvolvesafixed-proportionsutilityfunction,youcannotsolveforutility-maximizingdecisionsbyusingcalculus.4.6Supposethatafast-foodjunkiederivesutilityfromthreegoods—softdrinks(x),hamburgers(y),andicecreamsundaes(z)—accordingtotheCobb-DouglasutilityfunctionChapter4UtilityMaximizationandChoice133
Uðx,y,zÞ¼x0:5y0:5ð1þzÞ0:5.Supposealsothatthepricesforthesegoodsaregivenbypx¼0:25,py¼1,andpz¼2andthatthisconsumer’sincomeisgivenbyI¼2.a.Showthat,forz¼0,maximizationofutilityresultsinthesameoptimalchoicesasinExample4.1.Showalsothatanychoicethatresultsinz>0(evenforafractionalz)reducesutilityfromthisoptimum.b.Howdoyouexplainthefactthatz¼0isoptimalhere?c.Howhighwouldthisindividual’sincomehavetobeinorderforanyztobepurchased?4.7ThelumpsumprincipleillustratedinFigure4.5appliestotransferpolicyaswellastaxation.Thisproblemexaminesthisapplicationoftheprinciple.a.UseagraphsimilartoFigure4.5toshowthatanincomegranttoapersonprovidesmoreutilitythandoesasubsidyongoodxthatcoststhesameamounttothegovernment.b.UsetheCobb-DouglasexpenditurefunctionpresentedinEquation4.52tocalculatetheextrapurchasingpowerneededtoraisethisperson’sutilityfromU¼2toU¼3.c.UseEquation4.52againtoestimatethedegreetowhichgoodxmustbesubsidizedinordertoraisethisperson’sutilityfromU¼2toU¼3.Howmuchwouldthissubsidycostthegovernment?Howwouldthiscostcomparetothecostcalculatedinpart(b)?d.Problem4.10asksyoutocomputeanexpenditurefunctionforamoregeneralCobb-DouglasutilityfunctionthantheoneusedinExample4.4.Usethatexpenditurefunctiontore-solveparts(b)and(c)hereforthecaseα¼0:3,afigureclosetothefractionofincomethatlow-incomepeoplespendonfood.e.Howwouldyourcalculationsinthisproblemhavechangedifwehadusedtheexpenditurefunctionforthefixedproportionscase(Equation4.54)instead?4.8Mr.Carrderivesalotofpleasurefromdrivingunderthewideblueskies.Forthenumberofmilesxthathedrives,hereceivesutilityUðxÞ¼500xx2.(Oncehedrivesbeyondacertainnumberofmiles,wearinesskicksinandtheridebecomeslessandlessenjoyable.)Now,hiscargiveshimadecenthighwaymileageof25milestothegallon.Butpayingforgas,representedbyy,inducesdisutilityforMr.Carr,shownbyUðyÞ¼1,000y.Mr.Carriswillingtospendupto$25forleisurelydrivingeveryweek.a.FindtheoptimumnumberofmilesdrivenbyMr.Carreveryweek,giventhatthepriceofgasis$2.50pergallon.b.Howdoesthatvaluechangewhenthepriceofgasrisesto$5.00pergallon?c.Now,furtherassumethatthereisaprobabilityof0.001thatMr.Carrwillgetaflattireeverymilehedrives.ThedisutilityfromaflattireisgivenbyUðzÞ¼50,000z(wherezisthenumberofflattiresincurred),andeachflattirecosts$50toreplace.FindthedistancedriventhatmaximizesMr.Carr’sutilityaftertakingintoaccounttheexpectedlikelihoodofflattires(assumethatthepriceofgasis$2.50pergallon).4.9SupposethatwehaveautilityfunctioninvolvingtwogoodsthatislinearoftheformUðx,yÞ¼axþby.Calculatetheexpenditurefunctionforthisutilityfunction.Hint:Theexpenditurefunctionwillhavekinksatvariouspriceratios.134Part2ChoiceandDemand
AnalyticalProblems4.10Cobb-DouglasutilityInExample4.1welookedattheCobb-DouglasutilityfunctionUðx,yÞ¼xαy1α,where0α1.Thisproblemillustratesafewmoreattributesofthatfunction.a.CalculatetheindirectutilityfunctionforthisCobb-Douglascase.b.Calculatetheexpenditurefunctionforthiscase.c.Showexplicitlyhowthecompensationrequiredtooffsettheeffectofariseinthepriceofxisrelatedtothesizeoftheexponentα.4.11CESutilityTheCESutilityfunctionwehaveusedinthischapterisgivenbyUðx,yÞ¼xδδþyδδ.a.Showthatthefirst-orderconditionsforaconstrainedutilitymaximumwiththisfunctionrequireindividualstochoosegoodsintheproportionxy¼pxpy !1=ðδ1Þ.b.Showthattheresultinpart(a)impliesthatindividualswillallocatetheirfundsequallybetweenxandyfortheCobb-Douglascase(δ¼0),aswehaveshownbeforeinseveralproblems.c.Howdoestheratiopxx=pyydependonthevalueofδ?Explainyourresultsintuitively.(Forfurtherdetailsonthisfunction,seeExtensionE4.3.)d.Derivetheindirectutilityandexpenditurefunctionsforthiscaseandcheckyourresultsbydescribingthehomogeneitypropertiesofthefunctionsyoucalculated.4.12Stone-GearyutilitySupposeindividualsrequireacertainleveloffood(x)toremainalive.Letthisamountbegivenbyx0.Oncex0ispurchased,individualsobtainutilityfromfoodandothergoods(y)oftheformUðx,yÞ¼ðxx0Þαyβ,whereαþβ¼1:a.ShowthatifI>pxx0thentheindividualwillmaximizeutilitybyspendingαðIpxx0Þþpxx0ongoodxandβðIpxx0Þongoody.Interpretthisresult.b.Howdotheratiospxx=Iandpyy=Ichangeasincomeincreasesinthisproblem?(SeealsoExtensionE4.2formoreonthisutilityfunction.)4.13CESindirectutilityandexpenditurefunctionsInthisproblem,wewilluseamorestandardformoftheCESutilityfunctiontoderiveindirectutilityandexpenditurefunctions.SupposeutilityisgivenbyUðx,yÞ¼ðxδþyδÞ1=δ[inthisfunctiontheelasticityofsubstitutionσ¼1=ð1δÞ].a.ShowthattheindirectutilityfunctionfortheutilityfunctionjustgivenisV¼IðprxþpryÞ1=r,wherer¼δ=ðδ1Þ¼1σ.Chapter4UtilityMaximizationandChoice135
b.Showthatthefunctionderivedinpart(a)ishomogeneousofdegree0inpricesandincome.c.Showthatthisfunctionisstrictlyincreasinginincome.d.Showthatthisfunctionisstrictlydecreasinginanyprice.e.ShowthattheexpenditurefunctionforthiscaseofCESutilityisgivenbyE¼VðprxþpryÞ1=r.f.Showthatthefunctionderivedinpart(e)ishomogeneousofdegree1inthegoods’prices.g.Showthatthisexpenditurefunctionisincreasingineachoftheprices.h.Showthatthefunctionisconcaveineachprice.SUGGESTIONSFORFURTHERREADINGBarten,A.P.,andVolkerBöhm.“ConsumerTheory.”InK.J.ArrowandM.D.Intriligator,Eds.,HandbookofMathe-maticalEconomics,vol.II.Amsterdam:North-Holland,1982.Sections10and11havecompactsummariesofmanyofthecon-ceptscoveredinthischapter.Deaton,A.,andJ.Muelbauer.EconomicsandConsumerBehavior.Cambridge:CambridgeUniversityPress,1980.Section2.5providesanicegeometrictreatmentofdualityconcepts.Dixit,A.K.OptimizationinEconomicTheory.Oxford:OxfordUniversityPress,1990.Chapter2providesseveralLagrangiananalysesfocusingontheCobb-Douglasutilityfunction.Hicks,J.R.ValueandCapital.Oxford:ClarendonPress,1946.ChapterIIandtheMathematicalAppendixprovidesomeearlysug-gestionsoftheimportanceoftheexpenditurefunction.Mas-Colell,A.,M.D.Whinston,andJ.R.Green.Microeco-nomicTheory.Oxford:OxfordUniversityPress,1995.Chapter3containsathoroughanalysisofutilityandexpenditurefunctions.Samuelson,PaulA.FoundationsofEconomicAnalysis.Cambridge,MA:HarvardUniversityPress,1947.ChapterVandAppendixAprovideasuccinctanalysisofthefirst-orderconditionsforautilitymaximum.Theappendixprovidesgoodcover-ageofsecond-orderconditions.Silberberg,E.,andW.Suen.TheStructureofEconomics:AMathematicalAnalysis,3rded.Boston:Irwin/McGraw-Hill,2001.Auseful,thoughfairlydifficult,treatmentofdualityinconsumertheory.Theil,H.TheoryandMeasurementofConsumerDemand.Amsterdam:North-Holland,1975.Goodsummaryofbasictheoryofdemandtogetherwithimplicationsforempiricalestimation.136Part2ChoiceandDemand
EXTENSIONSBudgetSharesThenineteenth-centuryeconomistErnstEngelwasoneofthefirstsocialscientiststointensivelystudypeople’sactualspendingpatterns.Hefocusedspecificallyonfoodconsumption.HisfindingthatthefractionofincomespentonfooddeclinesasincomeincreaseshascometobeknownasEngel’slawandhasbeenconfirmedinmanystudies.Engel’slawissuchanempiricalregularitythatsomeeconomistshavesug-gestedmeasuringpovertybythefractionofincomespentonfood.Twootherinterestingapplicationsare:(1)thestudybyHayashi(1995)showingthattheshareofincomedevotedtofoodsfavoredbytheelderlyismuchhigherintwo-generationhouseholdsthaninone-generationhouseholds;and(2)findingsbyBehr-man(1989)fromless-developedcountriesshowingthatpeople’sdesiresforamorevarieddietastheirincomesrisemayinfactresultinreducingthefractionofincomespentonparticularnutrients.Intheremain-derofthisextensionwelookatsomeevidenceonbudgetshares(denotedbysi¼pixi=I)togetherwithabitmoretheoryonthetopic.E4.1ThevariabilityofbudgetsharesTableE4.1showssomerecentbudgetsharedatafromtheUnitedStates.Engel’slawisclearlyvisibleinthetable:asincomerisesfamiliesspendasmallerpropor-tionoftheirfundsonfood.Otherimportantvariationsinthetableincludethedecliningshareofincomespentonhealth-careneedsandthemuchlargershareofincomedevotedtoretirementplansbyhigher-incomepeople.Interestingly,thesharesofincomedevotedtoshelterandtransportationarerelativelyconstantovertherangeofincomeshowninthetable;apparently,high-incomepeoplebuybiggerhousesandcars.ThevariableincomesharesinTableE4.1illustratewhytheCobb-Douglasutilityfunctionisnotusefulfordetailedempiricalstudiesofhouseholdbehavior.WhenutilityisgivenbyUðx,yÞ¼xαyβ,theimplieddemandequationsarex¼αI=pxandy¼βI=py.Therefore,sx¼pxx=I¼αandsy¼pyy=I¼β,(i)andbudgetsharesareconstantforallobservedin-comelevelsandrelativeprices.Becauseofthisshort-coming,economistshaveinvestigatedanumberofotherpossibleformsfortheutilityfunctionthatpermitmoreflexibility.E4.2LinearexpendituresystemAgeneralizationoftheCobb-Douglasfunctionthatincorporatestheideathatcertainminimalamountsofeachgoodmustbeboughtbyanindividualðx0,y0ÞistheutilityfunctionUðx,yÞ¼ðxx0Þαðyy0Þβ(ii)forxx0andyy0,whereagainαþβ¼1.DemandfunctionscanbederivedfromthisutilityfunctioninawayanalogoustotheCobb-Douglascasebyintroducingtheconceptofsupernumeraryin-comeðIÞ,whichrepresentstheamountofpurchas-ingpowerremainingafterpurchasingtheminimumbundleI¼Ipxx0pyy0.(iii)Usingthisnotation,thedemandfunctionsarex¼ðpxx0þαIÞ=px,y¼ðpyy0þβIÞ=py.(iv)Inthiscase,then,theindividualspendsaconstantfractionofsupernumeraryincomeoneachgoodoncetheminimumbundlehasbeenpurchased.Manipula-tionofEquationivyieldstheshareequationssx¼αþðβpxx0αpyy0Þ=I,sy¼βþðαpyy0βpxx0Þ=I,(v)whichshowthatthisdemandsystemisnothomothetic.InspectionofEquationvshowstheunsurprisingresultthatthebudgetshareofagoodispositivelyrelatedtotheminimalamountofthatgoodneededandneg-ativelyrelatedtotheminimalamountoftheothergoodrequired.Becausethenotionofnecessarypurchasesseemstoaccordwellwithreal-worldobservation,thislinearexpendituresystem(LES),whichwasfirstdevel-opedbyStone(1954),iswidelyusedinempiricalstud-ies.TheutilityfunctioninEquationiiisalsocalledaStone-Gearyutilityfunction.TraditionalpurchasesOneofthemostinterestingusesoftheLESistoexaminehowitsnotionofnecessarypurchaseschangesasconditionschange.Forexample,OczkowskiandChapter4UtilityMaximizationandChoice137
Philip(1994)studyhowaccesstomodernconsumergoodsmayaffecttheshareofincomethatindividualsintransitionaleconomiesdevotetotraditionallocalitems.TheyshowthatvillagersofPapua,NewGuinea,reducesuchsharessignificantlyasoutsidegoodsbe-comeincreasinglyaccessible.Hence,suchimprove-mentsasbetterroadsformovinggoodsprovideoneoftheprimaryroutesbywhichtraditionalculturalpracticesareundermined.E4.3CESutilityInChapter3weintroducedtheCESutilityfunctionUðx,yÞ¼xδδþyδδ(vi)forδ1,δ6¼0.Theprimaryuseofthisfunctionistoillustratealternativesubstitutionpossibilities(asreflectedinthevalueoftheparameterδ).Budgetsharesimpliedbythisutilityfunctionprovideanumberofsuchinsights.Manipulationofthefirst-orderconditionsforaconstrainedutilitymaximumwiththeCESfunctionyieldstheshareequationssx¼1=½1þðpy=pxÞK,sy¼1=½1þðpx=pyÞK,(vii)whereK¼δ=ðδ1Þ.ThehomotheticnatureoftheCESfunctionisshownbythefactthattheseshareexpressionsdependonlyonthepriceratio,px=py.BehaviorofthesharesinresponsetochangesinrelativepricesdependsonthevalueoftheparameterK.FortheCobb-Douglascase,δ¼0andsoK¼0andsx¼sy¼1=2.Whenδ>0;substitutionpossibilitiesaregreatandK<0.Inthiscase,Equationviishowsthatsxandpx=pymoveinoppositedirections.Ifpx=pyrises,theindividualsub-stitutesyforxtosuchanextentthatsxfalls.Alterna-tively,ifδ<0,thensubstitutionpossibilitiesarelimited,K>0,andsxandpx=pymoveinthesameTABLEE4.1BudgetSharesofU.S.Households,2004AnnualIncome$10,000–$14,999$40,000–$49,999Over$70,000ExpenditureItemFood15.314.311.8Shelter21.818.517.6Utilities,fuel,andpublicservices10.27.75.4Transportation15.418.417.6Healthinsurance4.93.82.3Otherhealth-careexpenses4.42.92.4Entertainment(includingalcohol)4.44.65.4Tobacco1.20.90.4Education2.51.12.6Insuranceandpensions2.79.614.7Other(apparel,personalcare,otherhousingexpenses,andmisc.)17.218.219.8SOURCE:ConsumerExpenditureReport,2004,BureauofLaborStatisticswebsite:http://www.bls.gov.138Part2ChoiceandDemand
direction.Inthiscase,anincreaseinpx=pycausesonlyminorsubstitutionofyforx,andsxactuallyrisesbe-causeoftherelativelyhigherpriceofgoodx.NorthAmericanfreetradeCESdemandfunctionsaremostoftenusedinlarge-scalecomputermodelsofgeneralequilibrium(seeChapter13)thateconomistsusetoevaluatetheimpactofmajoreconomicchanges.BecausetheCESmodelstressesthatsharesrespondtochangesinrelativeprices,itisparticularlyappropriateforlookingatinno-vationssuchaschangesintaxpolicyorininternationaltraderestrictions,wherechangesinrelativepricesarequitelikely.OneimportantrecentareaofsuchresearchhasbeenontheimpactoftheNorthAmericanFreeTradeAgreementforCanada,Mexico,andtheUnitedStates.Ingeneral,thesemodelsfindthatallofthecountriesinvolvedmightbeexpectedtogainfromtheagreement,butthatMexico’sgainsmaybethegreatestbecauseitisexperiencingthegreatestchangeinrelativeprices.KehoeandKehoe(1995)presentanumberofcomputableequilibriummodelsthatecon-omistshaveusedintheseexaminations.1E4.4ThealmostidealdemandsystemAnalternativewaytostudybudgetsharesistostartfromaspecificexpenditurefunction.Thisapproachisespe-ciallyconvenientbecausetheenvelopetheoremshowsthatbudgetsharescanbederiveddirectlyfromexpen-diturefunctionsthroughlogarithmicdifferentiation:∂lnEðpx,py,VÞ∂lnpx¼1Eðpx,py,VÞ⋅∂E∂px⋅∂px∂lnpx¼xpxE¼sx.(viii)DeatonandMuellbauer(1980)makeextensiveuseofthisrelationshiptostudythecharacteristicsofapar-ticularclassofexpenditurefunctionsthattheytermanalmostidealdemandsystem(AIDS).Theirexpendi-turefunctiontakestheformlnEðpx,py,VÞ¼a0þa1lnpxþa2lnpyþ0:5b1ðlnpxÞ2þb2lnpxlnpyþ0:5b3ðlnpyÞ2þVc0pc1xpc2y.(ix)Thisformapproximatesanyexpenditurefunction.Forthefunctiontobehomogeneousofdegree1intheprices,theparametersofthefunctionmustobeytheconstraintsa1þa2¼1,b1þb2¼0,b2þb3¼0,andc1þc2¼0.UsingtheresultsofEquationviiishowsthat,forthisfunction,sx¼a1þb1lnpxþb2lnpyþc1Vc0pc1xpc2y,sy¼a2þb2lnpxþb3lnpyþc2Vc0pc1xpc2y⋅(x)Noticethat,giventheparameterrestrictions,sxþsy¼1.Makinguseoftheinverserelationshipbetweenindirectutilityandexpenditurefunctionsandsomeadditionalalgebraicmanipulationwillputthesebudgetshareequationsintoasimpleformsuitableforeconometricestimation:sx¼a1þb1lnpxþb2lnpyþc1ðE=pÞ,sy¼a2þb2lnpxþb3lnpyþc2ðE=pÞ,(xi)wherepisanindexofpricesdefinedbylnp¼a0þa1lnpxþa2lnpyþ0:5b1ðlnpxÞ2þb2lnpxlnpyþ0:5b3ðlnpyÞ2.(xii)Inotherwords,theAIDSshareequationsstatethatbudgetsharesarelinearinthelogarithmsofpricesandintotalrealexpenditures.Inpractice,simplerpriceindicesareoftensubstitutedfortherathercom-plexindexgivenbyEquationxii,althoughthereissomecontroversyaboutthispractice(seetheExten-sionstoChapter5).BritishexpenditurepatternsDeatonandMuellbauerapplythisdemandsystemtothestudyofBritishexpenditurepatternsbetween1954and1974.Theyfindthatbothfoodandhousinghavenegativecoefficientsofrealexpenditures,imply-ingthattheshareofincomedevotedtotheseitemsfalls(atleastinBritain)aspeoplegetricher.Theauthorsalsofindsignificantrelativepriceeffectsinmanyoftheirshareequations,andpriceshaveespe-ciallylargeeffectsinexplainingtheshareofexpendi-turesdevotedtotransportationandcommunication.InapplyingtheAIDSmodeltoreal-worlddata,theauthorsalsoencounteravarietyofeconometricdiffi-culties,themostimportantofwhichisthatmanyoftheequationsdonotappeartoobeytherestrictionsnecessaryforhomogeneity.Addressingsuchissueshasbeenamajortopicforfurtherresearchonthisdemandsystem.1TheresearchontheNorthAmericanFreeTradeAgreementisdiscussedinmoredetailintheExtensionstoChapter13Chapter4UtilityMaximizationandChoice139
ReferencesBehrman,JereR.“IsVarietytheSpiceofLife?ImplicationsforCaloricIntake.”ReviewofEconomicsandStatistics(November1989):666–72.Deaton,Angus,andJohnMuellbauer.“AnAlmostIdealDemandSystem.”AmericanEconomicReview(June1980):312–26.Hyashi,Fumio.“IstheJapaneseExtendedFamilyAltruis-ticallyLinked?ATestBasedonEngelCurves.”JournalofPoliticalEconomy(June1995):661–74.Kehoe,PatrickJ.,andTimothyJ.Kehoe.ModelingNorthAmericanEconomicIntegration.London:KluwerAcademicPublishers,1995.Oczkowski,E.,andN.E.Philip.“HouseholdExpenditurePatternsandAccesstoConsumerGoodsinaTransi-tionalEconomy.”JournalofEconomicDevelopment(June1994):165–83.Stone,R.“LinearExpenditureSystemsandDemandAnalysis.”EconomicJournal(September1954):511–27.140Part2ChoiceandDemand
CHAPTER5IncomeandSubstitutionEffectsInthischapterwewillusetheutility-maximizationmodeltostudyhowthequantityofagoodthatanindividualchoosesisaffectedbyachangeinthatgood’sprice.Thisexaminationallowsustoconstructtheindividual’sdemandcurveforthegood.Intheprocesswewillprovideanumberofinsightsintothenatureofthispriceresponseandintothekindsofassumptionsthatliebehindmostanalysesofdemand.DEMANDFUNCTIONSAswepointedoutinChapter4,inprincipleitwillusuallybepossibletosolvethenecessaryconditionsofautilitymaximumfortheoptimallevelsofx1,x2,…,xn(andλ,theLagrangianmultiplier)asfunctionsofallpricesandincome.Mathematically,thiscanbeexpressedasndemandfunctionsoftheformx1¼x1ðp1,p2,…,pn,IÞ,x2¼x2ðp1,p2,…,pn,IÞ,…xn¼xnðp1,p2,…,pn,IÞ.(5.1)Ifthereareonlytwogoods,xandy(thecasewewillusuallybeconcernedwith),thisnotationcanbesimplifiedabitasx¼xðpx,py,IÞ,y¼yðpx,py,IÞ.(5.2)Onceweknowtheformofthesedemandfunctionsandthevaluesofallpricesandincome,wecan“predict”howmuchofeachgoodthispersonwillchoosetobuy.Thenotationstressesthatpricesandincomeare“exogenous”tothisprocess;thatis,theseareparametersoverwhichtheindividualhasnocontrolatthisstageoftheanalysis.Changesinthepa-rameterswill,ofcourse,shiftthebudgetconstraintandcausethispersontomakedifferentchoices.Thatquestionisthefocusofthischapterandthenext.Specifically,inthischapterwewillbelookingatthepartialderivatives∂x=∂Iand∂x=∂pxforanyarbitrarygoodx.Chapter6willcarrythediscussionfurtherbylookingat“cross-price”effectsoftheform∂x=∂pyforanyarbitrarypairofgoodsxandy.HomogeneityAfirstpropertyofdemandfunctionsrequireslittlemathematics.Ifweweretodoubleallpricesandincome(indeed,ifweweretomultiplythemallbyanypositiveconstant),thentheoptimalquantitiesdemandedwouldremainunchanged.Doublingallpricesandincomechangesonlytheunitsbywhichwecount,notthe“real”quantityofgoodsdemanded.This141
resultcanbeseeninanumberofways,althoughperhapstheeasiestisthroughagraphicapproach.ReferringbacktoFigures4.1and4.2,itisclearthatdoublingpx,py,andIdoesnotaffectthegraphofthebudgetconstraint.Hence,x,ywillstillbethecombinationthatischosen.Further,pxxþpyy¼Iisthesameconstraintas2pxxþ2pyy¼2I.Somewhatmoretechnically,wecanwritethisresultassayingthat,foranygoodxi,xi¼xiðp1,p2,…,pn,IÞ¼xiðtp1,tp2,…,tpn,tIÞ(5.3)foranyt>0.FunctionsthatobeythepropertyillustratedinEquation5.3aresaidtobehomogeneousofdegree0.1Hence,wehaveshownthatindividualdemandfunctionsarehomogeneousofdegree0inallpricesandincome.Changingallpricesandincomeinthesameproportionswillnotaffectthephysicalquantitiesofgoodsdemanded.Thisresultshowsthat(intheory)individuals’demandswillnotbeaffectedbya“pure”inflationduringwhichallpricesandincomesriseproportionally.Theywillcontinuetodemandthesamebundleofgoods.Ofcourse,ifaninflationwerenotpure(thatis,ifsomepricesrosemorerapidlythanothers),thiswouldnotbethecase.EXAMPLE5.1HomogeneityHomogeneityofdemandisadirectresultoftheutility-maximizationassumption.Demandfunctionsderivedfromutilitymaximizationwillbehomogeneousand,conversely,demandfunctionsthatarenothomogeneouscannotreflectutilitymaximization(unlesspricesenterdirectlyintotheutilityfunctionitself,astheymightforgoodswithsnobappeal).If,forexample,anindividual’sutilityforfoodðxÞandhousingðyÞisgivenbyutility¼Uðx,yÞ¼x0:3y0:7,(5.4)thenitisasimplematter(followingtheprocedureusedinExample4.1)toderivethedemandfunctionsx¼0:3Ipx,y¼0:7Ipy.(5.5)Thesefunctionsobviouslyexhibithomogeneity,sinceadoublingofallpricesandincomewouldleavexandyunaffected.Iftheindividual’spreferencesforxandywerereflectedinsteadbytheCESfunctionUðx,yÞ¼x0:5þy0:5,(5.6)then(asshowninExample4.2)thedemandfunctionsaregivenbyx¼11þpx=py !⋅Ipx,y¼11þpy=px !⋅Ipy.(5.7)Asbefore,bothofthesedemandfunctionsarehomogeneousofdegree0;adoublingofpx,py,andIwouldleavexandyunaffected.1Moregenerally,aswesawinChapters2and4,afunctionfðx1,x2,…,xnÞissaidtobehomogeneousofdegreekiffðtx1,tx2,…,txnÞ¼tkfðx1,x2,…,xnÞforanyt>0.Themostcommoncasesofhomogeneousfunctionsarek¼0andk¼1.Iffishomogeneousofdegree0,thendoublingallofitsargumentsleavesfunchangedinvalue.Iffishomogeneousofdegree1,thendoublingallofitsargumentswilldoublethevalueoff.142Part2ChoiceandDemand
QUERY:Dothedemandfunctionsderivedinthisexampleensurethattotalspendingonxandywillexhausttheindividual’sincomeforanycombinationofpx,py,andI?Canyouprovethatthisisthecase?CHANGESININCOMEAsaperson’spurchasingpowerrises,itisnaturaltoexpectthatthequantityofeachgoodpurchasedwillalsoincrease.ThissituationisillustratedinFigure5.1.AsexpendituresincreasefromI1toI2toI3,thequantityofxdemandedincreasesfromx1tox2tox3.Also,thequantityofyincreasesfromy1toy2toy3.NoticethatthebudgetlinesI1,I2,andI3areallparallel,reflectingthatonlyincomeischanging,nottherelativepricesofxandy.Becausetheratiopx=pystaysconstant,theutility-maximizingconditionsalsorequirethattheMRSstayconstantastheindividualmovestohigherlevelsofsatisfaction.TheMRSisthereforethesameatpoint(x3,y3)asat(x1,y1).NormalandinferiorgoodsInFigure5.1,bothxandyincreaseasincomeincreases—both∂x=∂Iand∂y=∂Iarepositive.Thismightbeconsideredtheusualsituation,andgoodsthathavethispropertyarecallednormalgoodsovertherangeofincomechangebeingobserved.FIGURE5.1EffectofanIncreaseinIncomeontheQuantitiesofxandyChosenAsincomeincreasesfromI1toI2toI3,theoptimal(utility-maximizing)choicesofxandyareshownbythesuccessivelyhigherpointsoftangency.Observethatthebudgetconstraintshiftsinaparallelwaybecauseitsslope(givenby−px=py)doesnotchange.Quantity of xQuantityof yy3U1U2U3U3I3U2I2U1I1y2y1x1x2x3Chapter5IncomeandSubstitutionEffects143
Forsomegoods,however,thequantitychosenmaydecreaseasincomeincreasesinsomeranges.Examplesofsuchgoodsarerotgutwhiskey,potatoes,andsecondhandclothing.Agoodzforwhich∂z=∂Iisnegativeiscalledaninferiorgood.ThisphenomenonisillustratedinFigure5.2.Inthisdiagram,thegoodzisinferiorbecause,forincreasesinincomeintherangeshown,lessofzisactuallychosen.Noticethatindifferencecurvesdonothavetobe“oddly”shapedinordertoexhibitinferiority;thecurvescorrespondingtogoodsyandzinFigure5.2continuetoobeytheassumptionofadiminishingMRS.Goodzisinferiorbecauseofthewayitrelatestotheothergoodsavailable(goodyhere),notbecauseofapeculiarityuniquetoit.Hence,wehavedevelopedthefollowingdefinitions.DEFINITIONInferiorandnormalgoods.Agoodxiforwhich∂xi=∂I<0oversomerangeofincomechangesisaninferiorgoodinthatrange.If∂xi=∂I0oversomerangeofincomevariationthenthegoodisanormal(or“noninferior”)goodinthatrange.CHANGESINAGOOD’SPRICETheeffectofapricechangeonthequantityofagooddemandedismorecomplextoanalyzethanistheeffectofachangeinincome.Geometrically,thisisbecausechangingapriceinvolveschangingnotonlytheinterceptsofthebudgetconstraintbutalsoitsslope.Con-sequently,movingtothenewutility-maximizingchoiceentailsnotonlymovingtoanotherindifferencecurvebutalsochangingtheMRS.Therefore,whenapricechanges,twoanalyticallydifferenteffectscomeintoplay.Oneoftheseisasubstitutioneffect:evenifFIGURE5.2AnIndifferenceCurveMapExhibitingInferiorityInthisdiagram,goodzisinferiorbecausethequantitypurchasedactuallydeclinesasincomeincreases.Here,yisanormalgood(asitmustbeifthereareonlytwogoodsavailable),andpurchasesofyincreaseastotalexpendituresincrease.Quantity of zQuantityof yy3U3I3U2U1I2I1y2y1z3z2z1144Part2ChoiceandDemand
theindividualweretostayonthesameindifferencecurve,consumptionpatternswouldbeallocatedsoastoequatetheMRStothenewpriceratio.Asecondeffect,theincomeeffect,arisesbecauseapricechangenecessarilychangesanindividual’s“real”income.Theindivid-ualcannotstayontheinitialindifferencecurveandmustmovetoanewone.Webeginbyanalyzingtheseeffectsgraphically.Thenwewillprovideamathematicaldevelopment.GraphicalanalysisofafallinpriceIncomeandsubstitutioneffectsareillustratedinFigure5.3.Thisindividualisinitiallymaximizingutility(subjecttototalexpenditures,I)byconsumingthecombinationx,y.FIGURE5.3DemonstrationoftheIncomeandSubstitutionEffectsofaFallinthePriceofxWhenthepriceofxfallsfromp1xtop2x,theutility-maximizingchoiceshiftsfromx,ytox,y.Thismovementcanbebrokendownintotwoanalyticallydifferenteffects:first,thesubstitutioneffect,involvingamovementalongtheinitialindifferencecurvetopointB,wheretheMRSisequaltothenewpriceratio;andsecond,theincomeeffect,entailingamovementtoahigherlevelofutilitybecauserealincomehasincreased.Inthediagram,boththesubstitutionandincomeeffectscausemorextobeboughtwhenitspricedeclines.NoticethatpointI=pyisthesameasbeforethepricechange;thisisbecausepyhasnotchanged.PointI=pythereforeappearsonboththeoldandnewbudgetconstraints.Quantity of xQuantityof yU2U2U1U1x*y*xBx**y**SubstitutioneffectIncomeeffectTotal increasein xBI= px1x+ pyyI= p2xx+ pyyIpyChapter5IncomeandSubstitutionEffects145
TheinitialbudgetconstraintisI¼p1xxþpyy.Nowsupposethatthepriceofxfallstop2x.ThenewbudgetconstraintisgivenbytheequationI¼p2xxþpyyinFigure5.3.Itisclearthatthenewpositionofmaximumutilityisatx,y,wherethenewbudgetlineistangenttotheindifferencecurveU2.Themovementtothisnewpointcanbeviewedasbeingcomposedoftwoeffects.First,thechangeintheslopeofthebudgetconstraintwouldhavemotivatedamovetopointB,evenifchoiceshadbeenconfinedtothoseontheoriginalindifferencecurveU1.ThedashedlineinFigure5.3hasthesameslopeasthenewbudgetconstraint(I¼p2xxþpyy)butisdrawntobetangenttoU1becauseweareconceptuallyholding“real”income(thatis,utility)constant.Arelativelylowerpriceforxcausesamovefromx,ytoBifwedonotallowthisindividualtobemadebetteroffasaresultofthelowerprice.Thismovementisagraphicdemonstrationofthesubstitutioneffect.ThefurthermovefromBtotheoptimalpointx,yisanalyticallyidenticaltothekindofchangeexhibitedearlierforchangesinincome.Becausethepriceofxhasfallen,thispersonhasagreater“real”incomeandcanaffordautilitylevel(U2)thatisgreaterthanthatwhichcouldpreviouslybeattained.Ifxisanormalgood,moreofitwillbechoseninresponsetothisincreaseinpurchasingpower.Thisobservationexplainstheoriginofthetermincomeeffectforthemovement.Overallthen,theresultofthepricedeclineistocausemorextobedemanded.Itisimportanttorecognizethatthispersondoesnotactuallymakeaseriesofchoicesfromx,ytoBandthentox,y.WeneverobservepointB;onlythetwooptimalpositionsarereflectedinobservedbehavior.However,thenotionofincomeandsubstitutioneffectsisanalyticallyvaluablebecauseitshowsthatapricechangeaffectsthequantityofxthatisdemandedintwoconceptuallydifferentways.Wewillseehowthisseparationoffersmajorinsightsinthetheoryofdemand.GraphicalanalysisofanincreaseinpriceIfthepriceofgoodxweretoincrease,asimilaranalysiswouldbeused.InFigure5.4,thebudgetlinehasbeenshiftedinwardbecauseofanincreaseinthepriceofxfromp1xtop2x.Themovementfromtheinitialpointofutilitymaximization(x,y)tothenewpoint(x,y)canbedecomposedintotwoeffects.First,evenifthispersoncouldstayontheinitialin-differencecurve(U2),therewouldstillbeanincentivetosubstituteyforxandmovealongU2topointB.However,becausepurchasingpowerhasbeenreducedbytheriseinthepriceofx,heorshemustmovetoalowerlevelofutility.Thismovementisagaincalledtheincomeeffect.NoticeinFigure5.4thatboththeincomeandsubstitutioneffectsworkinthesamedirectionandcausethequantityofxdemandedtobereducedinresponsetoanincreaseinitsprice.EffectsofpricechangesforinferiorgoodsSofarwehaveshownthatsubstitutionandincomeeffectstendtoreinforceoneanother.Forapricedecline,bothcausemoreofthegoodtobedemanded,whereasforapriceincrease,bothcauselesstobedemanded.Althoughthisanalysisisaccurateforthecaseofnormal(noninferior)goods,thepossibilityofinferiorgoodscomplicatesthestory.Inthiscase,incomeandsubstitutioneffectsworkinoppositedirections,andthecombinedresultofapricechangeisindeterminate.Afallinprice,forexample,willalwayscauseanindividualtotendtoconsumemoreofagoodbecauseofthesubstitutioneffect.Butifthegoodisinferior,theincreaseinpurchasingpowercausedbythepricedeclinemaycauselessofthegoodtobebought.Theresultisthereforeindeterminate:thesubstitutioneffecttendstoincreasethequantityoftheinferiorgoodbought,whereasthe(perverse)incomeeffecttendstoreducethisquantity.Unlikethesituationfornormalgoods,itisnotpossibleheretopredicteventhedirectionoftheeffectofachangeinpxonthequantityofxconsumed.146Part2ChoiceandDemand
Giffen’sparadoxIftheincomeeffectofapricechangeisstrongenough,thechangeinpriceandtheresultingchangeinthequantitydemandedcouldactuallymoveinthesamedirection.LegendhasitthattheEnglisheconomistRobertGiffenobservedthisparadoxinnineteenth-centuryIre-land:whenthepriceofpotatoesrose,peoplereportedlyconsumedmoreofthem.Thispeculiarresultcanbeexplainedbylookingatthesizeoftheincomeeffectofachangeinthepriceofpotatoes.Potatoeswerenotonlyinferiorgoods,theyalsousedupalargeportionoftheIrishpeople’sincome.Anincreaseinthepriceofpotatoesthereforereducedrealincomesubstantially.TheIrishwereforcedtocutbackonotherluxuryfoodconsumptioninordertobuymorepotatoes.Eventhoughthisrenderingofeventsishistoricallyimplausible,theFIGURE5.4DemonstrationoftheIncomeandSubstitutionEffectsofanIncreaseinthePriceofxWhenthepriceofxincreases,thebudgetconstraintshiftsinward.Themovementfromtheinitialutility-maximizingpoint(x,y)tothenewpoint(x,y)canbeanalyzedastwoseparateeffects.ThesubstitutioneffectwouldbedepictedasamovementtopointBontheinitialindifferencecurve(U2).Thepriceincrease,however,wouldcreatealossofpurchasingpowerandaconsequentmovementtoalowerindifferencecurve.Thisistheincomeeffect.Inthediagram,boththeincomeandsubstitutioneffectscausethequantityofxtofallasaresultoftheincreaseinitsprice.Again,thepointI=pyisnotaffectedbythechangeinthepriceofx.Total reductionin xSubstitutioneffectIncomeeffectQuantity of xQuantityof yx*xBx**y*y**IpyU2U2U1U1BI= px2x+ pyyI= px1x+ pyyChapter5IncomeandSubstitutionEffects147
possibilityofanincreaseinthequantitydemandedinresponsetoanincreaseinthepriceofagoodhascometobeknownasGiffen’sparadox.2LaterwewillprovideamathematicalanalysisofhowGiffen’sparadoxcanoccur.AsummaryHence,ourgraphicalanalysisleadstothefollowingconclusions.OPTIMIZATIONPRINCIPLESubstitutionandincomeeffects.Theutility-maximizationhypothesissuggeststhat,fornormalgoods,afallinthepriceofagoodleadstoanincreaseinquantitypurchasedbecause:(1)thesubstitutioneffectcausesmoretobepurchasedastheindividualmovesalonganindifferencecurve;and(2)theincomeeffectcausesmoretobepurchasedbecausethepricedeclinehasincreasedpurchasingpower,therebypermittingmovementtoahigherindiffer-encecurve.Whenthepriceofanormalgoodrises,similarreasoningpredictsadeclineinthequantitypurchased.Forinferiorgoods,substitutionandincomeeffectsworkinoppositedirections,andnodefinitepredictionscanbemade.THEINDIVIDUAL’SDEMANDCURVEEconomistsfrequentlywishtographdemandfunctions.Itwillcomeasnosurprisetoyouthatthesegraphsarecalled“demandcurves.”Understandinghowsuchwidelyusedcurvesrelatetounderlyingdemandfunctionsprovidesadditionalinsightstoeventhemostfunda-mentalofeconomicarguments.Tosimplifythedevelopment,assumethereareonlytwogoodsandthat,asbefore,thedemandfunctionforgoodxisgivenbyx¼xðpx,py,IÞ.Thedemandcurvederivedfromthisfunctionlooksattherelationshipbetweenxandpxwhileholdingpy,_I,andpreferencesconstant.Thatis,itshowstherelationshipx¼xðpx,_py,_IÞ,(5.8)wherethebarsoverpyandIindicatethatthesedeterminantsofdemandarebeingheldconstant.ThisconstructionisshowninFigure5.5.Thegraphshowsutility-maximizingchoicesofxandyasthisindividualispresentedwithsuccessivelylowerpricesofgoodx(whileholdingpyandIconstant).Weassumethatthequantitiesofxchosenincreasefromx0tox00tox000asthatgood’spricefallsfromp0xtop00xtop000x.Suchanassumptionisinaccordwithourgeneralconclusionthat,exceptintheunusualcaseofGiffen’sparadox,∂x=∂pxisnegative.InFigure5.5b,informationabouttheutility-maximizingchoicesofgoodxistrans-ferredtoademandcurvewithpxontheverticalaxisandsharingthesamehorizontalaxisasFigure5.5a.Thenegativeslopeofthecurveagainreflectstheassumptionthat∂x=∂pxisnegative.Hence,wemaydefineanindividualdemandcurveasfollows.DEFINITIONIndividualdemandcurve.Anindividualdemandcurveshowstherelationshipbetweenthepriceofagoodandthequantityofthatgoodpurchasedbyanindividual,assumingthatallotherdeterminantsofdemandareheldconstant.2AmajorproblemwiththisexplanationisthatitdisregardsMarshall’sobservationthatbothsupplyanddemandfactorsmustbetakenintoaccountwhenanalyzingpricechanges.IfpotatopricesincreasedbecauseofthepotatoblightinIreland,thensupplyshouldhavebecomesmaller,sohowcouldmorepotatoespossiblyhavebeenconsumed?Also,sincemanyIrishpeoplewerepotatofarmers,thepotatopriceincreaseshouldhaveincreasedrealincomeforthem.Foradetaileddiscussionoftheseandotherfascinatingbitsofpotatolore,seeG.P.DwyerandC.M.Lindsey,“RobertGiffenandtheIrishPotato,”AmericanEconomicReview(March1984):188–92.148Part2ChoiceandDemand
FIGURE5.5ConstructionofanIndividual’sDemandCurveIn(a),theindividual’sutility-maximizingchoicesofxandyareshownforthreedifferentpricesofx(p0x,p00x,andp000x).In(b),thisrelationshipbetweenpxandxisusedtoconstructthedemandcurveforx.Thedemandcurveisdrawnontheassumptionthatpy,I,andpreferencesremainconstantaspxvaries.Quantity of x per periodQuantityof yperperiodI= px′ x+ pyyI= px″ x+ pyyI= px″‴ x+ pyyx‴x″x′U2U3U1I/py(a) Individual’s indifference curve mapQuantity of x per periodpxx(px,py,I)(b) Demand curvex‴x″x′px′ px″px‴
ThedemandcurveillustratedinFigure5.5staysinafixedpositiononlysolongasallotherdeterminantsofdemandremainunchanged.Ifoneoftheseotherfactorsweretochangethenthecurvemightshifttoanewposition,aswenowdescribe.ShiftsinthedemandcurveThreefactorswereheldconstantinderivingthisdemandcurve:(1)income;(2)pricesofothergoods(say,py);and(3)theindividual’spreferences.Ifanyoftheseweretochange,theentiredemandcurvemightshifttoanewposition.Forexample,ifIweretoincrease,thecurvewouldshiftoutward(providedthat∂x=∂I>0,thatis,providedthegoodisa“normal”goodoverthisincomerange).Morexwouldbedemandedateachprice.Ifanotherprice(say,py)weretochangethenthecurvewouldshiftinwardoroutward,dependingpreciselyonhowxandyarerelated.Inthenextchapterwewillexaminethatrelationshipindetail.Finally,thecurvewouldshiftiftheindividual’spreferencesforgoodxweretochange.AsuddenadvertisingblitzbytheMcDonald’sCorporationmightshiftthedemandforham-burgersoutward,forexample.Asthisdiscussionmakesclear,onemustrememberthatthedemandcurveisonlyatwo-dimensionalrepresentationofthetruedemandfunction(Equation5.8)andthatitisstableonlyifotherthingsdostayconstant.Itisimportanttokeepclearlyinmindthedifferencebetweenamovementalongagivendemandcurvecausedbyachangeinpxandashiftintheentirecurvecausedbyachangeinincome,inoneoftheotherprices,orinpreferences.Traditionally,thetermanincreaseindemandisreservedforanoutwardshiftinthedemandcurve,whereasthetermanincreaseinthequantitydemandedreferstoamovementalongagivencurvecausedbyachangeinpx.EXAMPLE5.2DemandFunctionsandDemandCurvesTobeabletographademandcurvefromagivendemandfunction,wemustassumethatthepreferencesthatgeneratedthefunctionremainstableandthatweknowthevaluesofincomeandotherrelevantprices.InthefirstcasestudiedinExample5.1,wefoundthatx¼0:3Ipx(5.9)andy¼0:7Ipy.Ifpreferencesdonotchangeandifthisindividual’sincomeis$100,thesefunctionsbecomex¼30px,y¼70py,(5.10)orpxx¼30,pyy¼70,whichmakesclearthatthedemandcurvesforthesetwogoodsaresimplehyperbolas.Ariseinincomewouldshiftbothofthedemandcurvesoutward.Noticealso,inthiscase,thatthedemandcurveforxisnotshiftedbychangesinpyandviceversa.150Part2ChoiceandDemand
ForthesecondcaseexaminedinExample5.1,theanalysisismorecomplex.Forgoodx,weknowthatx¼11þpx=py !⋅Ipx,(5.11)sotographthisinthepx–xplanewemustknowbothIandpy.IfweagainassumeI¼100andletpy¼1,thenEquation5.11becomesx¼100p2xþpx,(5.12)which,whengraphed,wouldalsoshowageneralhyperbolicrelationshipbetweenpriceandquantityconsumed.InthiscasethecurvewouldberelativelyflatterbecausesubstitutioneffectsarelargerthanintheCobb-Douglascase.FromEquation5.11,wealsoknowthat∂x∂I¼11þpx=py !⋅1px>0(5.13)and∂x∂py¼IðpxþpyÞ2>0,soincreasesinIorpywouldshiftthedemandcurveforgoodxoutward.QUERY:HowwouldthedemandfunctionsinEquations5.10changeifthispersonspenthalfofhisorherincomeoneachgood?Showthatthesedemandfunctionspredictthesamexconsumptionatthepointpx¼1,py¼1,I¼100asdoesEquation5.11.UseanumericalexampletoshowthattheCESdemandfunctionismoreresponsivetoanincreaseinpxthanistheCobb-Douglasdemandfunction.COMPENSATEDDEMANDCURVESInFigure5.5,thelevelofutilitythispersongetsvariesalongthedemandcurve.Aspxfalls,heorsheismadeincreasinglybetter-off,asshownbytheincreaseinutilityfromU1toU2toU3.Thereasonthishappensisthatthedemandcurveisdrawnontheassumptionthatnominalincomeandotherpricesareheldconstant;hence,adeclineinpxmakesthispersonbetteroffbyincreasinghisorherrealpurchasingpower.Althoughthisisthemostcommonwaytoimposetheceterisparibusassumptionindevelopingademandcurve,itisnottheonlyway.Analternativeapproachholdsrealincome(orutility)constantwhileexaminingreactionstochangesinpx.ThederivationisillustratedinFigure5.6,whereweholdutilityconstant(atU2)whilesuccessivelyreducingpx.Aspxfalls,theindividual’snominalincomeiseffectivelyreduced,thuspreventinganyincreaseinutility.Inotherwords,theeffectsofthepricechangeonpurchasingpowerare“compensated”soastoconstraintheindividualtoremainonU2.Reactionstochangingpricesincludeonlysubstitutioneffects.Ifwewereinsteadtoexamineeffectsofincreasesinpx,incomecompensationwouldbepositive:Thisindividual’sincomewouldhavetobeincreasedtopermithimorhertostayontheU2indifferencecurveinresponsetothepricerises.Wecansummarizetheseresultsasfollows.DEFINITIONCompensateddemandcurve.Acompensateddemandcurveshowstherelationshipbe-tweenthepriceofagoodandthequantitypurchasedontheassumptionthatotherpricesandutilityareheldconstant.Thecurve(whichissometimestermeda“Hicksian”demandcurveChapter5IncomeandSubstitutionEffects151
aftertheBritisheconomistJohnHicks)thereforeillustratesonlysubstitutioneffects.Mathe-matically,thecurveisatwo-dimensionalrepresentationofthecompensateddemandfunctionx¼xcðpx,py,UÞ.(5.14)RelationshipbetweencompensatedanduncompensateddemandcurvesThisrelationshipbetweenthetwodemandcurveconceptsisillustratedinFigure5.7.Atp00xthecurvesintersect,becauseatthatpricetheindividual’sincomeisjustsufficienttoattainFIGURE5.6ConstructionofaCompensatedDemandCurveThecurvexcshowshowthequantityofxdemandedchangeswhenpxchanges,holdingpyandutilityconstant.Thatis,theindividual’sincomeis“compensated”soastokeeputilityconstant.Hence,xcreflectsonlysubstitutioneffectsofchangingprices.px′px″x‴x″x*Quantity of xQuantity of xQuantityof ypySlope= – pySlope= – px‴pySlope= – U2pxxc(px,py,U)(a) Individual’s indifference curve map(b) Compensated demand curvex″x*x**px′ px″px‴152Part2ChoiceandDemand
utilitylevelU2(compareFigures5.5andFigure5.6).Hence,x00isdemandedundereitherdemandconcept.Forpricesbelowp00x,however,theindividualsuffersacompensatingreductioninincomeonthecurvexcthatpreventsanincreaseinutilityfromthelowerprice.Hence,assumingxisanormalgood,itfollowsthatlessxisdemandedatp000xalongxcthanalongtheuncompensatedcurvex.Alternatively,forapriceabovep00x(suchasp0x),incomecompensationispositivebecausetheindividualneedssomehelptoremainonU2.Hence,againassumingxisanormalgood,atp0xmorexisdemandedalongxcthanalongx.Ingeneral,then,foranormalgoodthecompensateddemandcurveissomewhatlessresponsivetopricechangesthanistheuncompensatedcurve.Thisisbecausethelatterreflectsbothsubstitutionandincomeeffectsofpricechanges,whereasthecompensatedcurvereflectsonlysubstitutioneffects.Thechoicebetweenusingcompensatedoruncompensateddemandcurvesineconomicanalysisislargelyamatterofconvenience.Inmostempiricalwork,uncompensatedcurves(whicharesometimescalled“Marshalliandemandcurves”)areusedbecausethedataonpricesandnominalincomesneededtoestimatethemarereadilyavailable.IntheExtensionstoChapter12wewilldescribesomeoftheseestimatesandshowhowtheymightbeem-ployedforpracticalpolicypurposes.Forsometheoreticalpurposes,however,compensateddemandcurvesareamoreappropriateconceptbecausetheabilitytoholdutilityconstantofferssomeadvantages.Ourdiscussionof“consumersurplus”laterinthischapteroffersoneillustrationoftheseadvantages.FIGURE5.7ComparisonofCompensatedandUncompensatedDemandCurvesThecompensated(xc)anduncompensated(x)demandcurvesintersectatp00xbecausex00isdemandedundereachconcept.Forpricesabovep00x,theindividual’sincomeisincreasedwiththecompensateddemandcurve,somorexisdemandedthanwiththeuncompensatedcurve.Forpricesbelowp00x,incomeisreducedforthecompensatedcurve,solessxisdemandedthanwiththeuncompensatedcurve.Thestandarddemandcurveisflatterbecauseitincorporatesbothsubstitu-tionandincomeeffectswhereasthecurvexcreflectsonlysubstitutioneffects.Quantity of xx*x**pxx(px,py,I)xc(px,py,U)x′x″x‴px′ px″px‴Chapter5IncomeandSubstitutionEffects153
EXAMPLE5.3CompensatedDemandFunctionsInExample3.1weassumedthattheutilityfunctionforhamburgers(y)andsoftdrinks(x)wasgivenbyutility¼Uðx,yÞ¼x0:5y0:5,(5.15)andinExample4.1weshowedthatwecancalculatetheMarshalliandemandfunctionsforsuchutilityfunctionsasx¼αIpx¼I2px,y¼βIpy¼I2py.(5.16)Also,inExample4.3wecalculatedtheindirectutilityfunctionbycombiningEquations5.15and5.16asutility¼VðI,px,pyÞ¼I2p0:5xp0:5y.(5.17)Toobtainthecompensateddemandfunctionsforxandy,wesimplyuseEquation5.17tosolveforIandthensubstitutethisexpressioninvolvingVintoEquations5.16.Thispermitsustointerchangeincomeandutilitysowemayholdthelatterconstant,asisrequiredforthecompensateddemandconcept.Makingthesesubstitutionsyieldsx¼Vp0:5yp0:5x,y¼Vp0:5xp0:5y.(5.18)Thesearethecompensateddemandfunctionsforxandy.Noticethatnowdemanddependsonutility(V)ratherthanonincome.Holdingutilityconstant,itisclearthatincreasesinpxreducethedemandforx,andthisnowreflectsonlythesubstitutioneffect(seealsoExample5.4).Althoughpydidnotenterintotheuncompensateddemandfunctionforgoodx,itdoesenterintothecompensatedfunction:increasesinpyshiftthecompensateddemandcurveforxoutward.Thetwodemandconceptsagreeattheassumedinitialpointpx¼1,py¼4,I¼8,andV¼2;Equations5.16predictx¼4,y¼1atthispoint,asdoEquations5.18.Forpx>1orpx<1,thedemandsdifferunderthetwoconcepts,however.If,say,px¼4,thentheuncompensatedfunctions(Equations5.16)predictx¼1,y¼1,whereasthecompensatedfunctions(Equations5.18)predictx¼2,y¼2.Thereductioninxresultingfromtheriseinitspriceissmallerwiththecompensateddemandfunctionthanitiswiththeuncompensatedfunctionbecausetheformerconceptadjustsforthenegativeeffectonpurchasingpowerthatcomesaboutfromthepricerise.Thisexamplemakesclearthedifferentceterisparibusassumptionsinherentinthetwodemandconcepts.Withuncompensateddemand,expendituresareheldconstantatI¼2andsotheriseinpxfrom1to4resultsinalossofutility;inthiscase,utilityfallsfrom2to1.Inthecompensateddemandcase,utilityisheldconstantatV¼2.Tokeeputilityconstant,expendituresmustrisetoE¼1ð2Þþ1ð2Þ¼4inordertooffsettheeffectsofthepricerise(seeEquation5.17).QUERY:ArethecompensateddemandfunctionsgiveninEquations5.18homogeneousofdegree0inpxandpyifutilityisheldconstant?Wouldyouexpectthattobetrueforallcompensateddemandfunctions?154Part2ChoiceandDemand
AMATHEMATICALDEVELOPMENTOFRESPONSETOPRICECHANGESUptothispointwehavelargelyreliedongraphicaldevicestodescribehowindividualsrespondtopricechanges.Additionalinsightsareprovidedbyamoremathematicalapproach.Ourbasicgoalistoexaminethepartialderivative∂x=∂px—thatis,howachangeinthepriceofagoodaffectsitspurchase,ceterisparibus.Inthenextchapter,wetakeupthequestionofhowchangesinthepriceofonecommodityaffectpurchasesofanothercommodity.DirectapproachOurgoalistousetheutility-maximizationmodeltolearnsomethingabouthowthedemandforgoodxchangeswhenpxchanges;thatis,wewishtocalculate∂x=∂px.Thedirectapproachtothisproblemmakesuseofthefirst-orderconditionsforutilitymaximization(Equations4.8).Differentiationofthesenþ1equationsyieldsanewsystemofnþ1equations,whicheventuallycanbesolvedforthederivativeweseek.3Unfortunately,obtain-ingthissolutionisquitecumbersomeandthestepsrequiredyieldlittleinthewayofeconomicinsights.Hence,wewillinsteadadoptanindirectapproachthatreliesontheconceptofduality.Intheend,bothapproachesyieldthesameconclusion,buttheindirectapproachismuchricherintermsoftheeconomicsitcontains.IndirectapproachTobeginourindirectapproach,4wewillassume(asbefore)thereareonlytwogoods(xandy)andfocusonthecompensateddemandfunction,xcðpx,py,UÞ,introducedinEquation5.14.Wenowwishtoillustratetheconnectionbetweenthisdemandfunctionandtheordinarydemandfunction,xðpx,py,IÞ.InChapter4weintroducedtheexpenditurefunction,whichrecordstheminimalexpenditurenecessarytoattainagivenutilitylevel.Ifwedenotethisfunctionbyminimumexpenditure¼Eðpx,py,UÞ(5.19)then,bydefinition,xcðpx,py,UÞ¼x½px,py,Eðpx,py,UÞ.(5.20)ThisconclusionwasalreadyintroducedinconnectionwithFigure5.7,whichshowedthatthequantitydemandedisidenticalforthecompensatedanduncompensateddemandfunctionswhenincomeisexactlywhatisneededtoattaintherequiredutilitylevel.Equation5.20isobtainedbyinsertingthatexpenditurelevelintothedemandfunction,xðpx,py,IÞ.NowwecanproceedbypartiallydifferentiatingEquation5.20withrespecttopxandrecognizingthatthisvariableentersintotheordinarydemandfunctionintwoplaces.Hence∂xc∂px¼∂x∂pxþ∂x∂E⋅∂E∂px,(5.21)andrearrangingtermsyields∂x∂px¼∂xc∂px∂x∂E⋅∂E∂px.(5.22)3See,forexample,PaulA.Samuelson,FoundationsofEconomicAnalysis(Cambridge,MA:HarvardUniversityPress,1947),pp.101–3.4ThefollowingproofisadaptedfromPhillipJ.Cook,“A‘OneLine’ProofoftheSlutskyEquation,”AmericanEconomicReview62(March1972):139.Chapter5IncomeandSubstitutionEffects155
ThesubstitutioneffectConsequently,thederivativeweseekhastwoterms.Interpretationofthefirsttermisstraightforward:Itistheslopeofthecompensateddemandcurve.Butthatsloperepresentsmovementalongasingleindifferencecurve;itis,infact,whatwecalledthe“substitutioneffect”earlier.ThefirsttermontherightofEquation5.22isamathematicalrepresentationofthateffect.TheincomeeffectThesecondterminEquation5.22reflectsthewayinwhichchangesinpxaffectthedemandforxthroughchangesinnecessaryexpenditurelevels(thatis,changesinpurchasingpower).Thistermthereforereflectstheincomeeffect.ThenegativesigninEquation5.22showsthedirectionoftheeffect.Forexample,anincreaseinpxincreasestheexpenditurelevelthatwouldhavebeenneededtokeeputilityconstant(mathematically,∂E=∂px>0).ButbecausenominalincomeisheldconstantinMarshalliandemand,theseextraexpendituresarenotavailable.Hencex(andy)mustbereducedtomeetthisshortfall.Theextentofthere-ductioninxisgivenby∂x=∂E.Ontheotherhand,ifpxfalls,theexpenditurelevelrequiredtoattainagivenutilityalsofalls.Thedeclineinxthatwouldnormallyaccompanysuchafallinexpendituresispreciselytheamountthatmustbeaddedbackthroughtheincomeeffect.Noticethatinthiscasetheincomeeffectworkstoincreasex.TheSlutskyequationTherelationshipsembodiedinEquation5.22werefirstdiscoveredbytheRussianeconomistEugenSlutskyinthelatenineteenthcentury.AslightchangeinnotationisrequiredtostatetheresultthewaySlutskydid.First,wewritethesubstitutioneffectassubstitutioneffect¼∂xc∂px¼∂x∂pxU¼constant(5.23)toindicatemovementalongasingleindifferencecurve.Fortheincomeeffect,wehaveincomeeffect¼∂x∂E⋅∂E∂px¼∂x∂I⋅∂E∂px,(5.24)becausechangesinincomeorexpendituresamounttothesamethinginthefunctionxðpx,py,I).Thesecondtermintheincomeeffectcanbestudiedmostdirectlybyusingtheenvelopetheorem.Rememberthatexpenditurefunctionsrepresentaminimizationprobleminwhichtheexpenditurerequiredtoreachaminimumlevelofutilityisminimized.TheLagrangianexpressionforthisminimizationisℒ¼pxxþpyyþλ½_UUðx,yÞ.Applyingtheenvelopetheoremtothisproblemyields∂E∂px¼∂ℒ∂px¼x.(5.25)Inwords,theenvelopetheoremshowsthatpartialdifferentiationoftheexpenditurefunc-tionwithrespecttoagood’spriceyieldsthedemandfunctionforthatgood.Becauseutilityisheldconstantintheexpenditurefunction,thisdemandfunctionwillbeacompensatedone.Thisresult,andasimilaroneinthetheoryofthefirm,isusuallycalledShephard’slemmaaftertheeconomistwhofirststudiedthisapproachtodemandtheoryindetail.Theresultisextremelyusefulinboththeoreticalandappliedmicroeconomics;partialdif-ferentiationofmaximizedorminimizedfunctionsisoftentheeasiestwaytoderivedemand156Part2ChoiceandDemand
functions.5Noticealsothattheresultmakesintuitivesense.Ifweaskhowmuchextraexpenditureisnecessarytocompensateforariseinthepriceofgoodx,asimpleappro-ximationwouldbegivenbythenumberofunitsofxcurrentlybeingconsumed.BycombiningEquations5.23–5.25,wecanarriveatthefollowingcompletestatementoftheresponsetoapricechange.OPTIMIZATIONPRINCIPLESlutskyequation.Theutility-maximizationhypothesisshowsthatthesubstitutionandincomeeffectsarisingfromapricechangecanberepresentedby∂x∂px¼substitutioneffectþincomeeffect,(5.26)or∂x∂px¼∂x∂pxU¼constantx∂x∂I.(5.27)TheSlutskyequationallowsamoredefinitivetreatmentofthedirectionandsizeofsubstitu-tionandincomeeffectsthanwaspossiblewithagraphicanalysis.First,thesubstitutioneffectð∂x=∂pxjU¼constantÞisalwaysnegativeaslongastheMRSisdiminishing.Afall(rise)inpxreduces(increases)px=py,andutilitymaximizationrequiresthattheMRSfall(rise)too.Butthiscanoccuralonganindifferencecurveonlyifxincreases(or,inthecaseofariseinpx,ifxdecreases).Hence,insofarasthesubstitutioneffectisconcerned,priceandquantityalwaysmoveinoppositedirections.Equivalently,theslopeofthecompensateddemandcurvemustbenegative.6Wewillshowthisresultinasomewhatdifferentwayinthefinalsectionofthischapter.Thesignoftheincomeeffect(x∂x=∂I)dependsonthesignof∂x=∂I.Ifxisanormalgood,then∂x=∂Iispositiveandtheentireincomeeffect,likethesubstitutioneffect,isnegative.Thus,fornormalgoods,priceandquantityalwaysmoveinoppositedirections.Forexample,afallinpxraisesrealincomeand,becausexisanormalgood,purchasesofxrise.Similarly,ariseinpxreducesrealincomeandsopurchasesofxfall.Overall,then,aswedescribedpreviouslyusingagraphicanalysis,substitutionandincomeeffectsworkinthesamedirectiontoyieldanegativelyslopeddemandcurve.Inthecaseofaninferiorgood,∂x=∂I<0andthetwotermsinEquation5.27wouldhavedifferentsigns.Itisatleasttheoreticallypossiblethat,inthiscase,thesecondtermcoulddominatethefirst,leadingtoGiffen’sparadox(∂x=∂px>0).EXAMPLE5.4ASlutskyDecompositionThedecompositionofapriceeffectthatwasfirstdiscoveredbySlutskycanbenicelyillus-tratedwiththeCobb-Douglasexamplestudiedpreviously.InExample5.3,wefoundthattheMarshalliandemandfunctionforgoodxwasxðpx,py,IÞ¼0:5Ipx(5.28)(continued)5Forinstance,inExample4.4,forexpenditurewefoundasimpleCobb-DouglasutilityfunctionoftheformEðpx,py,VÞ¼2Vp0:5xp0:5y.Hence,fromShephard’slemmaweknowthatx¼∂E=∂px¼Vp0:5xp0:5y,whichisthesameresultweobtainedinExample5.3.6ItispossiblethatsubstitutioneffectswouldbezeroifindifferencecurveshaveanL-shape(implyingthatxandyareusedinfixedproportions).SomeexamplesareprovidedintheChapter5problems.Chapter5IncomeandSubstitutionEffects157
EXAMPLE5.4CONTINUEDandthattheHicksian(compensated)demandfunctionwasxcðpx,py,VÞ¼Vp0:5yp0:5x.(5.29)TheoveralleffectofapricechangeonthedemandforgoodxcanbefoundbydifferentiatingtheMarshalliandemandfunction:∂x∂px¼0:5Ip2x.(5.30)NowwewishtoshowthatthiseffectisthesumofthetwoeffectsthatSlutskyidentified.Asbefore,thesubstitutioneffectisfoundbydifferentiatingthecompensateddemandfunction:substitutioneffect¼∂xc∂px¼0:5Vp0:5yp1:5x.(5.31)Wecaneliminateindirectutility,V,bysubstitutionfromEquation5.17:substitutioneffect¼0:5ð0:5Ip0:5xp0:5yÞp0:5yp1:5x¼0:25Ip2x.(5.32)Calculationoftheincomeeffectinthisexampleisconsiderablyeasier.ApplyingtheresultsfromEquation5.27,wehaveincomeeffect¼x∂x∂I¼0:5Ipx⋅0:5px¼0:25Ip2x.(5.33)AcomparisonofEquation5.30withEquations5.32and5.33showsthatwehaveindeeddecomposedthepricederivativeofthisdemandfunctionintosubstitutionandincomecomponents.Interestingly,thesubstitutionandincomeeffectsareofpreciselythesamesize.This,aswewillseeinlaterexamples,isoneofthereasonsthattheCobb-Douglasisaveryspecialcase.Thewell-wornnumericalexamplewehavebeenusingalsodemonstratesthisdecomposi-tion.Whenthepriceofxrisesfrom$1to$4,the(uncompensated)demandforxfallsfromx¼4tox¼1butthecompensateddemandforxfallsonlyfromx¼4tox¼2.Thatdeclineof50percentisthesubstitutioneffect.Thefurther50percentfallfromx¼2tox¼1rep-resentsreactionstothedeclineinpurchasingpowerincorporatedintheMarshalliandemandfunction.Thisincomeeffectdoesnotoccurwhenthecompensateddemandnotionisused.QUERY:Inthisexample,theindividualspendshalfofhisorherincomeongoodxandhalfongoody.HowwouldtherelativesizesofthesubstitutionandincomeeffectsbealterediftheexponentsoftheCobb-Douglasutilityfunctionwerenotequal?DEMANDELASTICITIESSofarinthischapterwehavebeenexamininghowindividualsrespondtochangesinpricesandincomebylookingatthederivativesofthedemandfunction.Formanyanalyticalquestionsthisisagoodwaytoproceedbecausecalculusmethodscanbedirectlyapplied.However,aswepointedoutinChapter2,focusingonderivativeshasonemajordisadvantageforempiricalwork:thesizesofderivativesdependdirectlyonhowvariablesaremeasured.158Part2ChoiceandDemand
Thatcanmakecomparisonsamonggoodsoracrosscountriesandtimeperiodsverydifficult.Forthisreason,mostempiricalworkinmicroeconomicsusessomeformofelasticitymeasure.Inthissectionweintroducethethreemostcommontypesofdemandelasticitiesandexploresomeofthemathematicalrelationsamongthem.Again,forsimplicitywewilllookatasituationwheretheindividualchoosesbetweenonlytwogoods,thoughtheseideascanbeeasilygeneralized.MarshalliandemandelasticitiesMostofthecommonlyuseddemandelasticitiesarederivedfromtheMarshalliandemandfunctionxðpx,py,IÞ.Specifically,thefollowingdefinitionsareused.DEFINITION1.Priceelasticityofdemandðex,pxÞ.Thismeasurestheproportionatechangeinquantitydemandedinresponsetoaproportionatechangeinagood’sownprice.Math-ematically,ex,px¼∆x=x∆px=px¼∆x∆px⋅pxx¼∂x∂px⋅pxx.(5.34)2.Incomeelasticityofdemandðex,IÞ.Thismeasurestheproportionatechangeinquan-titydemandedinresponsetoaproportionatechangeinincome.Inmathematicalterms,ex,I¼∆x=x∆I=I¼∆x∆I⋅Ix¼∂x∂I⋅Ix.(5.35)3.Cross-priceelasticityofdemandðex,pyÞ.Thismeasurestheproportionatechangeinthequantityofxdemandedinresponsetoaproportionatechangeinthepriceofsomeothergood(y):ex,py¼∆x=x∆py=py¼∆x∆py⋅pyx¼∂x∂py⋅pyx.(5.36)Noticethatallofthesedefinitionsusepartialderivatives,whichsignifiesthatallotherdeterminantsofdemandaretobeheldconstantwhenexaminingtheimpactofaspecificvariable.Intheremainderofthissectionwewillexploretheown-priceelasticitydefinitioninsomedetail.Examiningthecross-priceelasticityofdemandistheprimarytopicofChapter6.PriceelasticityofdemandThe(own-)priceelasticityofdemandisprobablythemostimportantelasticityconceptinallofmicroeconomics.Notonlydoesitprovideaconvenientwayofsummarizinghowpeoplerespondtopricechangesforawidevarietyofeconomicgoods,butitisalsoacentralconceptinthetheoryofhowfirmsreacttothedemandcurvesfacingthem.Asyouprobablyalreadylearnedinearliereconomicscourses,adistinctionisusuallymadebetweencasesofelasticdemand(wherepriceaffectsquantitysignificantly)andinelasticdemand(wheretheeffectofpriceissmall).Onemathematicalcomplicationinmakingtheseideaspreciseisthatthepriceelasticityofdemanditselfisnegative7because,exceptintheunlikelycaseofGiffen’spara-dox,∂x=∂pxisnegative.Thedividinglinebetweenlargeandsmallresponsesisgenerallyset7Sometimeseconomistsusetheabsolutevalueofthepriceelasticityofdemandintheirdiscussions.Althoughthisismathematicallyincorrect,suchusageisquitecommon.Forexample,astudythatfindsthatex,px¼1:2maysometimesreportthepriceelasticityofdemandas“1.2.”Wewillnotdosohere,however.Chapter5IncomeandSubstitutionEffects159
at1.Ifex,px¼1,changesinxandpxareofthesameproportionatesize.Thatis,a1percentincreaseinpriceleadstoafallof1percentinquantitydemanded.Inthiscase,demandissaidtobe“unit-elastic.”Alternatively,ifex,px<1,thenquantitychangesareproportionatelylargerthanpricechangesandwesaythatdemandis“elastic.”Forexample,ifex,px¼3,each1percentriseinpriceleadstoafallof3percentinquantitydemanded.Finally,ifex,px>1thendemandisinelasticandquantitychangesarepropor-tionatelysmallerthanpricechanges.Avalueofex,px¼0:3,forexample,meansthata1percentincreaseinpriceleadstoafallinquantitydemandedof0.3percent.InChapter12wewillseehowaggregatedataareusedtoestimatethetypicalindividual’spriceelasticityofdemandforagoodandhowsuchestimatesareusedinavarietyofquestionsinappliedmicroeconomics.PriceelasticityandtotalspendingThepriceelasticityofdemanddetermineshowachangeinprice,ceterisparibus,affectstotalspendingonagood.Theconnectionismosteasilyshownwithcalculus:∂ðpx⋅xÞ∂px¼px⋅∂x∂pxþx¼xðex,pxþ1Þ.(5.37)So,thesignofthisderivativedependsonwhetherex,pxislargerorsmallerthan1.Ifdemandisinelastic(0>ex,px>1),thederivativeispositiveandpriceandtotalspendingmoveinthesamedirection.Intuitively,ifpricedoesnotaffectquantitydemandedverymuch,thenquantitystaysrelativelyconstantaspricechangesandtotalspendingreflectsmainlythosepricemovements.Thisisthecase,forexample,withthedemandformostagriculturalproducts.Weather-inducedchangesinpriceforspecificcropsusuallycausetotalspendingonthosecropstomoveinthesamedirection.Ontheotherhand,ifdemandiselastic(ex,px<1),reactionstoapricechangearesolargethattheeffectontotalspendingisreversed:ariseinpricecausestotalspendingtofall(becausequantityfallsalot)andafallinpricecausestotalspendingtorise(quantityincreasessignificantly).Fortheunit-elasticcase(ex,px¼1),totalspendingisconstantnomatterhowpricechanges.CompensatedpriceelasticitiesBecausesomemicroeconomicanalysesfocusonthecompensateddemandfunction,itisalsousefultodefineelasticitiesbasedonthatconcept.SuchdefinitionsfollowdirectlyfromtheirMarshalliancounterparts.DEFINITIONLetthecompensateddemandfunctionbegivenbyxcðpx,py,UÞ.Thenwehavethefollowingdefinitions.1.Compensatedown-priceelasticityofdemand(exc,px).Thiselasticitymeasuresthepro-portionatecompensatedchangeinquantitydemandedinresponsetoaproportionatechangeinagood’sownprice:exc,px¼∆xc=xc∆px=px¼∆xc∆px⋅pxxc¼∂xc∂px⋅pxxc.(5.38)2.Compensatedcross-priceelasticityofdemand(exc,px).Thismeasurestheproportionatecompensatedchangeinquantitydemandedinresponsetoaproportionatechangeinthepriceofanothergood:exc,py¼∆xc=xc∆py=py¼∆xc∆py⋅pyxc¼∂xc∂py⋅pyxc.(5.39)160Part2ChoiceandDemand
WhetherthesepriceelasticitiesdiffermuchfromtheirMarshalliancounterpartsdependsontheimportanceofincomeeffectsintheoveralldemandforgoodx.ThepreciseconnectionbetweenthetwocanbeshownbymultiplyingtheSlutskyresultfromEquation5.27bythefactorpx=x:pxx⋅∂x∂px¼ex,px¼pxx⋅∂xc∂pxpxx⋅x⋅∂x∂I¼exc,pxsxex,I,(5.40)wheresx¼pxx=Iistheshareoftotalincomedevotedtothepurchaseofgoodx.Equation5.40showsthatcompensatedanduncompensatedown-priceelasticitiesofdemandwillbesimilarifeitheroftwoconditionshold:(1)TheshareofincomedevotedtogoodxðsxÞissmall;or(2)theincomeelasticityofdemandforgoodxðex,IÞissmall.Eitheroftheseconditionsservestoreducetheimportanceoftheincomecompensationemployedintheconstructionofthecompensateddemandfunction.Ifgoodxisunimportantinaperson’sbudget,thentheamountofincomecompensationrequiredtooffsetapricechangewillbesmall.Evenifagoodhasalargebudgetshare,ifdemanddoesnotreactstronglytochangesinincomethentheresultsofeitherdemandconceptwillbesimilar.Hence,therewillbemanycircumstanceswhereonecanusethetwopriceelasticityconceptsmoreorlessinterchange-ably.Putanotherway,therearemanyeconomiccircumstancesinwhichsubstitutioneffectsconstitutethemostimportantcomponentofpriceresponses.RelationshipsamongdemandelasticitiesThereareanumberofrelationshipsamongtheelasticityconceptsthathavebeendevelopedinthissection.Allofthesearederivedfromtheunderlyingmodelofutilitymaximization.Herewelookatthreesuchrelationshipsthatprovidefurtherinsightonthenatureofin-dividualdemand.Homogeneity.Thehomogeneityofdemandfunctionscanalsobeexpressedinelasticityterms.Becauseanyproportionalincreaseinallpricesandincomeleavesquantitydemandedunchanged,thenetsumofallpriceelasticitiestogetherwiththeincomeelasticityforaparticulargoodmustsumtozero.AformalproofofthispropertyreliesonEuler’stheorem(seeChapter2).Applyingthattheoremtothedemandfunctionxðpx,py,IÞandremember-ingthatthisfunctionishomogeneousofdegree0yields0¼px⋅∂x∂pxþpy⋅∂x∂pyþI⋅∂x∂I.(5.41)IfwedivideEquation5.41byxthenweobtain0¼ex,pxþex,pyþex,I,(5.42)asintuitionsuggests.Thisresultshowsthattheelasticitiesofdemandforanygoodcannotfollowacompletelyflexiblepattern.Theymustexhibitasortofinternalconsistencythatreflectsthebasicutility-maximizingapproachonwhichthetheoryofdemandisbased.Engelaggregation.IntheExtensionstoChapter4wediscussedtheempiricalanalysisofmarketsharesandtookspecialnoteofEngel’slawthattheshareofincomedevotedtofooddeclinesasincomeincreases.Fromanelasticityperspective,Engel’slawisastatementoftheempiricalregularitythattheincomeelasticityofdemandforfoodisgenerallyfoundtobeconsiderablylessthan1.Becauseofthis,itmustbethecasethattheincomeelasticityofallnonfooditemsmustbegreaterthan1.IfanindividualexperiencesanincreaseinhisorherincomethenwewouldexpectfoodexpenditurestoincreasebyasmallerproportionalChapter5IncomeandSubstitutionEffects161
amount,buttheincomemustbespentsomewhere.Intheaggregate,theseotherexpendi-turesmustincreaseproportionallyfasterthanincome.Aformalstatementofthispropertyofincomeelasticitiescanbederivedbydifferentiatingtheindividual’sbudgetconstraint(I¼pxxþpyy)withrespecttoincomewhiletreatingthepricesasconstants:1¼px⋅∂x∂Iþpy⋅∂y∂I.(5.43)Abitofalgebraicmanipulationofthisexpressionyields1¼px⋅∂x∂I⋅xIxIþpy⋅∂y∂I⋅yIyI¼sxex,Iþsyey,I;(5.44)here,asbefore,sirepresentstheshareofincomespentongoodi.Equation5.44showsthattheweightedaverageonincomeelasticitiesforallgoodsthatapersonbuysmustbe1.Ifweknew,say,thatapersonspentafourthofhisorherincomeonfoodandtheincomeelasticityofdemandforfoodwere0.5,thentheincomeelasticityofdemandforeverythingelsemustbeapproximately1:17½¼ð10:25⋅0:5Þ=0:75.Becausefoodisanimportant“necessity,”everythingelseisinsomesensea“luxury.”Cournotaggregation.Theeighteenth-centuryFrencheconomistAntoineCournotpro-videdoneofthefirstmathematicalanalysesofpricechangesusingcalculus.Hismostimportantdiscoverywastheconceptofmarginalrevenue,aconceptcentraltotheprofit-maximizationhypothesisforfirms.Cournotwasalsoconcernedwithhowthechangeinasinglepricemightaffectthedemandforallgoods.Ourfinalrelationshipshowsthatthereareindeedconnectionsamongallofthereactionstothechangeinasingleprice.Webeginbydifferentiatingthebudgetconstraintagain,thistimewithrespecttopx:∂I∂px¼0¼px⋅∂x∂pxþxþpy⋅∂y∂px.Multiplicationofthisequationbypx=Iyields0¼px⋅∂x∂px⋅pxI⋅xxþx⋅pxIþpy⋅∂y∂px⋅pxI⋅yy,0¼sxex,pxþsxþsyey,px,(5.45)sothefinalCournotresultissxex,pxþsyey,px¼sx.(5.46)Thisequationshowsthatthesizeofthecross-priceeffectofachangeinthepriceofxonthequantityofyconsumedisrestrictedbecauseofthebudgetconstraint.Direct,own-priceeffectscannotbetotallyoverwhelmedbycross-priceeffects.Thisisthefirstofmanycon-nectionsamongthedemandsforgoodsthatwewillstudymoreintensivelyinthenextchapter.Generalizations.Althoughwehaveshowntheseaggregationresultsonlyforthecaseoftwogoods,theyareactuallyeasilygeneralizedtothecaseofmanygoods.YouareaskedtodojustthatinProblem5.11.Amoredifficultissueiswhethertheseresultsshouldbeexpectedtoholdfortypicaleconomicdatainwhichthedemandsofmanypeoplearecombined.Ofteneconomiststreataggregatedemandrelationshipsasdescribingthebehav-iorofa“typicalperson,”andtheserelationshipsshouldinfactholdforsuchaperson.Butthesituationmaynotbequitethatsimple,aswewillshowwhendiscussingaggregationlaterinthebook.162Part2ChoiceandDemand
EXAMPLE5.5DemandElasticities:TheImportanceofSubstitutionEffectsInthisexamplewecalculatethedemandelasticitiesimpliedbythreeoftheutilityfunctionswehavebeenusing.Althoughthepossibilitiesincorporatedinthesefunctionsaretoosimpletoreflecthoweconomistsactuallystudydemandempirically,theydoshowhowelasticitiesultimatelyreflectpeople’spreferences.Oneespeciallyimportantlessonistoshowwhymostofthevariationindemandelasticitiesamonggoodsprobablyarisesbecauseofdifferencesinthesizeofsubstitutioneffects.Case1:Cobb-Douglasðσ¼1Þ.Uðx,yÞ¼xαyβ,whereαþβ¼1.Thedemandfunctionsderivedfromthisutilityfunctionarexðpx,py,IÞ¼αIpx,yðpx,py,IÞ¼βIpy¼ð1αÞIpy.Applicationoftheelasticitydefinitionsshowsthatex,px¼∂x∂px⋅pxx¼αIp2x⋅pxαI=px¼1,ex,py¼∂x∂py⋅pyx¼0⋅pyx¼0,ex,I¼∂x∂I⋅Ix¼αpx⋅IαI=px¼1.(5.47)Theelasticitiesforgoodytakeonanalogousvalues.Hence,theelasticitiesassociatedwiththeCobb-Douglasutilityfunctionareconstantoverallrangesofpricesandincomeandtakeonespeciallysimplevalues.Thattheseobeythethreerelationshipsshownintheprevioussectioncanbeeasilydemonstratedusingthefactthatheresx¼αandsy¼β:Homogeneity:ex,pxþex,pyþex,I¼1þ0þ1¼0.Engelaggregation:sxex,Iþsyey,I¼α⋅1þβ⋅1¼αþβ¼1.Cournotaggregation:sxex,pxþsyey,px¼αð1Þþβ⋅0¼α¼sx.WecanalsousetheSlutskyequationinelasticityform(Equation5.40)toderivethecompensatedpriceelasticityinthisexample:exc,px¼ex,pxþsxex,I¼1þαð1Þ¼α1¼β.(5.48)Here,then,thecompensatedpriceelasticityforxdependsonhowimportantothergoods(y)areintheutilityfunction.Case2:CESðσ¼2;δ¼0:5Þ.Uðx,yÞ¼x0:5þy0:5.InExample4.2weshowedthatthedemandfunctionsthatcanbederivedfromthisutilityfunctionarexðpx,py,IÞ¼Ipxð1þpxp1yÞ,yðpx,py,IÞ¼Ipyð1þp1xpyÞ.(continued)Chapter5IncomeandSubstitutionEffects163
EXAMPLE5.5CONTINUEDAsyoumightimagine,calculatingelasticitiesdirectlyfromthesefunctionscantakesometime.Herewefocusonlyontheown-priceelasticityandmakeuseoftheresult(fromProblem5.6)thatthe“shareelasticity”ofanygoodisgivenbyesx,px¼∂sx∂px⋅pxsx¼1þex,px.(5.49)Inthiscase,sx¼pxxI¼11þpxp1y,sotheshareelasticityismoreeasilycalculatedandisgivenbyesx,px¼∂sx∂px⋅pxsx¼p1yð1þpxp1yÞ2⋅pxð1þpxp1yÞ1¼pxp1y1þpxp1y.(5.50)Becausetheunitsinwhichgoodsaremeasuredareratherarbitraryinutilitytheory,wemightaswelldefinethemsothatinitiallypx¼py,inwhichcase8wegetex,px¼esx,px1¼11þ11¼1.5.(5.51)Hence,demandismoreelasticinthiscasethanintheCobb-Douglasexample.ThereasonforthisisthatthesubstitutioneffectislargerforthisversionoftheCESutilityfunction.ThiscanbeshownbyagainapplyingtheSlutskyequation(andusingthefactsthatex,I¼1andsx¼0:5):exc,px¼ex,pxþsxex,I¼1.5þ0.5ð1Þ¼1,(5.52)whichistwicethesizeofthesubstitutioneffectfortheCobb-Douglas.Case3.CESðσ¼0:5;δ¼1Þ:Uðx,yÞ¼x1y1.ReferringbacktoExample4.2,wecanseethattheshareofgoodximpliedbythisutilityfunctionisgivenbysx¼11þp0:5yp0:5x,sotheshareelasticityisgivenbyesx,px¼∂sx∂px⋅pxsx¼0:5p0:5yp1:5xð1þp0:5yp0:5xÞ2⋅pxð1þp0:5yp0:5xÞ1¼0:5p0:5yp0:5x1þp0:5yp0:5x..(5.53)Ifweagainadoptthesimplificationofequalprices,wecancomputetheown-priceelas-ticityasex,px¼esx,px1¼0:521¼0:75(5.54)andthecompensatedpriceelasticityasexc,px¼ex,pxþsxex,I¼0:75þ0:5ð1Þ¼0:25.(5.55)So,forthisversionoftheCESutilityfunction,theown-priceelasticityissmallerthaninCase1andCase2becausethesubstitutioneffectissmaller.Hence,themainvariationamongthecasesisindeedcausedbydifferencesinthesizeofthesubstitutioneffect.8Noticethatthissubstitutionmustbemadeafterdifferentiationbecausethedefinitionofelasticityrequiresthatwechangeonlypxwhileholdingpyconstant.164Part2ChoiceandDemand
Ifyouneverwanttoworkoutthiskindofelasticityagain,itmaybehelpfultomakeuseofthequitegeneralresultthatexc,px¼ð1sxÞσ.(5.56)Youmaywishtocheckoutthatthisformulaworksinthesethreeexamples(withsx¼0:5andσ¼1,2,0.5,respectively),andProblem5.9asksyoutoshowthatthisresultisgen-erallytrue.BecauseallofthesecasesbasedontheCESutilityfunctionhaveaunitaryincomeelasticity,theown-priceelasticitycanbecomputedfromthecompensatedpriceelasticitybysimplyaddingsxtothefigurecomputedinEquation5.56.QUERY:Whyisitthatthebudgetshareforgoodsotherthanxð1sxÞentersintothecompensatedown-priceelasticitiesinthisexample?CONSUMERSURPLUSAnimportantprobleminappliedwelfareeconomicsistodeviseamonetarymeasureofthegainsandlossesthatindividualsexperiencewhenpriceschange.Oneuseforsuchameasureistoplaceadollarvalueonthewelfarelossthatpeopleexperiencewhenamarketismonopo-lizedwithpricesexceedingmarginalcosts.Anotherapplicationconcernsmeasuringthewelfaregainsthatpeopleexperiencewhentechnicalprogressreducesthepricestheypayforgoods.Relatedapplicationsoccurinenvironmentaleconomics(measuringthewelfarecostsofincorrectlypricedresources),lawandeconomics(evaluatingthewelfarecostsofexcessprotectionstakeninfearoflawsuits),andpubliceconomics(measuringtheexcessburdenofatax).Inordertomakesuchcalculations,economistsuseempiricaldatafromstudiesofmarketdemandincombinationwiththetheorythatunderliesthatdemand.Inthissectionwewillexaminetheprimarytoolsusedinthatprocess.ConsumerwelfareandtheexpenditurefunctionTheexpenditurefunctionprovidesthefirstcomponentforthestudyoftheprice/welfareconnection.Supposethatwewishedtomeasurethechangeinwelfarethatanindividualexperiencesifthepriceofgoodxrisesfromp0xtop1x.Initiallythispersonrequiresexpendi-turesofEðp0x,py,U0ÞtoreachautilityofU0.Toachievethesameutilityoncethepriceofxrises,heorshewouldrequirespendingofatleastEðp1x,py,U0Þ.Inordertocompensateforthepricerise,therefore,thispersonwouldrequireacompensation(formallycalledacompen-satingvariationorCV)ofCV¼Eðp1x,py,U0ÞEðp0x,py,U0Þ.(5.57)ThissituationisshowngraphicallyinthetoppanelofFigure5.8.Initially,thispersonconsumesthecombinationx0,y0andobtainsutilityofU0.Whenthepriceofxrises,heorshewouldbeforcedtomovetocombinationx2,y2andsufferalossinutility.IfheorshewerecompensatedwithextrapurchasingpowerofamountCV,heorshecouldaffordtoremainontheU0indifferencecurvedespitethepricerisebychoosingcombinationx1,y1.ThedistanceCV,therefore,providesamonetarymeasureofhowmuchthispersonneedsinordertobecompensatedforthepricerise.UsingthecompensateddemandcurvetoshowCVUnfortunately,individuals’utilityfunctionsandtheirassociatedindifferencecurvemapsarenotdirectlyobservable.ButwecanmakesomeheadwayonempiricalmeasurementbydetermininghowtheCVamountcanbeshownonthecompensateddemandcurveintheChapter5IncomeandSubstitutionEffects165
FIGURE5.8ShowingCompensatingVariationIfthepriceofxrisesfromp0xtop1x,thispersonneedsextraexpendituresofCVtoremainontheU0indifferencecurve.IntegrationshowsthatCVcanalsoberepresentedbytheshadedareabelowthecompensateddemandcurveinpanel(b).Quantity of xQuantityofyCVy1U0U1y2y0x2x1x0E(px0, . . . ,U0)E(px0, . . . ,U0)E(px1, . . . ,U0)E(px1, . . . ,U0)Quantity of xPricepx0x1x0xc(px, . . . ,U0)BApx1px2(a) Indifference curve map(b) Compensated demand curve
bottompanelofFigure5.8.Shephard’slemmashowsthatthecompensateddemandfunc-tionforagoodcanbefounddirectlyfromtheexpenditurefunctionbydifferentiation:xcðpx,py,UÞ¼∂Eðpx,py,UÞ∂px.(5.58)Hence,thecompensationdescribedinEquation5.57canbefoundbyintegratingacrossasequenceofsmallincrementstopricefromp0xtop1x:CV¼∫p1xp0xdE¼∫p1xp0xxcðpx,py,U0Þdpx(5.59)whileholdingpyandutilityconstant.TheintegraldefinedinEquation5.59hasageometricinterpretation,whichisshowninthelowerpanelofFigure5.9:itistheshadedareatotheleftofthecompensateddemandcurveandboundedbyp0xandp1x.Sothewelfarecostofthispriceincreasecanalsobeillustratedusingchangesintheareabelowthecompensatedde-mandcurve.TheconsumersurplusconceptThereisanotherwaytolookatthisissue.Wecanaskhowmuchthispersonwouldbewillingtopayfortherighttoconsumeallofthisgoodthatheorshewantedatthemarketpriceofp0xratherthandoingwithoutthegoodcompletely.ThecompensateddemandcurveinthebottompanelofFigure5.8showsthatifthepriceofxrosetop2x,thisperson’sconsumptionwouldfalltozeroandheorshewouldrequireanamountofcompensationequaltoareap2xAp0xinordertoacceptthechangevoluntarily.Therighttoconsumex0atapriceofp0xisthereforeworththisamounttothisindividual.Itistheextrabenefitthatthispersonreceivesbybeingabletomakemarkettransactionsattheprevailingmarketprice.Thisvalue,givenbytheareabelowthecompensateddemandcurveandabovethemarketprice,istermedconsumersurplus.Lookedatinthisway,thewelfareproblemcausedbyariseinthepriceofxcanbedescribedasalossinconsumersurplus.Whenthepricerisesfromp0xtop1xtheconsumersurplus“triangle”decreasesinsizefromp2xAp0xtop2xBp1x.Asthefiguremakesclear,thatissimplyanotherwayofdescribingthewelfarelossrepresentedinEquation5.59.WelfarechangesandtheMarshalliandemandcurveSofarouranalysisofthewelfareeffectsofpricechangeshasfocusedonthecompensateddemandcurve.Thisisinsomewaysunfortunatebecausemostempiricalworkondemandactuallyestimatesordinary(Marshallian)demandcurves.InthissectionwewillshowthatstudyingchangesintheareabelowaMarshalliandemandcurvemayinfactbequiteagoodwaytomeasurewelfarelosses.ConsidertheMarshalliandemandcurvexðpx,…ÞillustratedinFigure5.9.Initiallythisconsumerfacesthepricep0xandchoosestoconsumex0.ThisconsumptionyieldsautilitylevelofU0,andtheinitialcompensateddemandcurveforx[thatis,xcðpx,py,U0Þ]alsopassesthroughthepointx0,p0x(whichwehavelabeledpointA).Whenpricerisestop1x,theMarshalliandemandforgoodxfallstox1(pointConthedemandcurve)andthisperson’sutilityalsofallsto,say,U1.Thereisanothercompensateddemandcurveassociatedwiththislowerlevelofutility,anditalsoisshowninFigure5.9.BoththeMarshalliandemandcurveandthisnewcompensateddemandcurvepassthroughpointC.ThepresenceofasecondcompensateddemandcurveinFigure5.9raisesanintriguingconceptualquestion.ShouldwemeasurethewelfarelossfromthepriceriseaswedidinFigure5.8usingthecompensatingvariation(CV)associatedwiththeinitialcompensateddemandcurve(areap1xBAp0x)orshouldwe,perhaps,usethisnewcompensateddemandcurveChapter5IncomeandSubstitutionEffects167
andmeasurethewelfarelossasareap1xCDp0x?Apotentialrationaleforusingtheareaunderthesecondcurvewouldbetofocusontheindividual’ssituationafterthepricerise(withutilitylevelU1).Wemightaskhowmuchheorshewouldnowbewillingtopaytoseethepricereturntoitsold,lowerlevels.9Theanswertothiswouldbegivenbyareap1xCDp0x.Thechoicebetweenwhichcompensateddemandcurvetousethereforeboilsdowntochoosingwhichlevelofutilityoneregardsastheappropriatetargetfortheanalysis.Luckily,theMarshalliandemandcurveprovidesaconvenientcompromisebetweenthesetwomeasures.BecausethesizeoftheareabetweenthetwopricesandbelowtheMarshalliancurve(areap1xCAp0x)issmallerthanthatbelowthecompensateddemandcurvebasedonU0butlargerthanthatbelowthecurvebasedonU1,itdoesseemanattractivemiddleground.Hence,thisisthemeasureofwelfarelosseswewillprimarilyusethroughoutthisbook.DEFINITIONConsumersurplus.ConsumersurplusistheareabelowtheMarshalliandemandcurveandabovemarketprice.Itshowswhatanindividualwouldpayfortherighttomakevoluntarytransactionsatthisprice.Changesinconsumersurpluscanbeusedtomeasurethewelfareeffectsofpricechanges.WeshouldpointoutthatsomeeconomistsuseeitherCVorEVtocomputethewelfareeffectsofpricechanges.Indeed,economistsareoftennotveryclearaboutwhichmeasureofwelfarechangetheyareusing.Ourdiscussionintheprevioussectionshowsthatifincomeeffectsaresmall,itreallydoesnotmakemuchdifferenceinanycase.FIGURE5.9WelfareEffectsofPriceChangesandtheMarshallianDemandCurveTheusualMarshallian(nominalincomeconstant)demandcurveforgoodxisxðpx,…Þ.Further,xcð…,U0Þandxcð…,U1Þdenotethecompensateddemandcurvesassociatedwiththeutilitylevelsexperiencedwhenp0xandp1x,respectively,prevail.Theareatotheleftofxðpx,…Þbetweenp0xandp1xisboundedbythesimilarareastotheleftofthecompensateddemandcurves.Hence,forsmallchangesinprice,theareatotheleftoftheMarshalliandemandcurveisagoodmeasureofwelfareloss.pxpx0px1x1x0Quantity of x per periodABCDx(px,. . . )xc(. . . ,U0)xc(. . . ,U1)9Thisalternativemeasureofcompensationissometimestermedthe“equivalentvariation”(EV).168Part2ChoiceandDemand
EXAMPLE5.6WelfareLossfromaPriceIncreaseTheseideascanbeillustratednumericallybyreturningtoouroldhamburger/softdrinkexample.Let’slookatthewelfareconsequencesofanunconscionablepriceriseforsoftdrinks(goodx)from$1to$4.InExample5.3,wefoundthatthecompensateddemandforgoodxwasgivenbyxcðpx,py,VÞ¼Vp0:5yp0:5x.(5.60)Hence,thewelfarecostofthepriceincreaseisgivenbyCV¼∫41xcðpx,py,VÞdpx¼∫41Vp0:5yp0:5xdpx¼2Vp0:5yp0:5xpx¼4px¼1.(5.61)Ifweusethevalueswehavebeenassumingthroughoutthisgastronomicfeast(V¼2,py¼4),thenCV¼2⋅2⋅2⋅ð4Þ0:52⋅2⋅2⋅ð1Þ0:5¼8.(5.62)Thisfigurewouldbecutinhalf(to4)ifwebelievedthattheutilitylevelafterthepricerise(V¼1)werethemoreappropriateutilitytargetformeasuringcompensation.IfinsteadwehadusedtheMarshalliandemandfunctionxðpx,py,IÞ¼0:5Ip1x,thelosswouldbecalculatedasloss¼∫41xðpx,py,IÞdpx¼∫410:5Ip1xdpx¼0:5Ilnpx41.(5.63)So,withI¼8,thislossisloss¼4lnð4Þ4lnð1Þ¼4lnð4Þ¼4ð1:39Þ¼5:55,(5.64)whichseemsareasonablecompromisebetweenthetwoalternativemeasuresbasedonthecompensateddemandfunctions.QUERY:Inthisproblem,noneofthedemandcurveshasafinitepriceatwhichdemandgoestopreciselyzero.Howdoesthisaffectthecomputationoftotalconsumersurplus?Doesthisaffectthetypesofwelfarecalculationsmadehere?REVEALEDPREFERENCEANDTHESUBSTITUTIONEFFECTTheprincipalunambiguouspredictionthatcanbederivedfromtheutility-maximationmodelisthattheslope(orpriceelasticity)ofthecompensateddemandcurveisnegative.TheproofofthisassertionreliesontheassumptionofadiminishingMRSandtherelatedobservationthat,withadiminishingMRS,thenecessaryconditionsforautilitymaximumarealsosufficient.Tosomeeconomists,therelianceonahypothesisaboutanunobservableutilityfunctionrepresentedaweakfoundationindeedonwhichtobaseatheoryofdemand.Analternativeapproach,whichleadstothesameresult,wasfirstproposedbyPaulSamuelsoninthelate1940s.10Thisapproach,whichSamuelsontermedthetheoryofrevealedpreference,definesaprincipleofrationalitythatisbasedonobservedbehaviorand10PaulA.Samuelson,FoundationsofEconomicAnalysis(Cambridge,MA:HarvardUniversityPress,1947).Chapter5IncomeandSubstitutionEffects169
thenusesthisprincipletoapproximateanindividual’sutilityfunction.Inthissense,apersonwhofollowsSamuelson’sprincipleofrationalitybehavesasifheorsheweremaximizingaproperutilityfunctionandexhibitsanegativesubstitutioneffect.BecauseSamuelson’sapproachprovidesadditionalinsightsintoourmodelofconsumerchoice,wewillbrieflyexamineithere.GraphicalapproachTheprincipleofrationalityinthetheoryofrevealedpreferenceisasfollows:Considertwobundlesofgoods,AandB.If,atsomepricesandincomelevel,theindividualcanaffordbothAandBbutchoosesA,wesaythatAhasbeen“revealedpreferred”toB.Theprincipleofrationalitystatesthatunderanydifferentprice-incomearrangement,BcanneverberevealedpreferredtoA.IfBisinfactchosenatanotherprice-incomeconfiguration,itmustbebecausetheindividualcouldnotaffordA.TheprincipleisillustratedinFigure5.10.Supposethat,whenthebudgetconstraintisgivenbyI1,pointAischoseneventhoughBalsocouldhavebeenpurchased.ThenAhasbeenrevealedpreferredtoB.If,forsomeotherbudgetconstraint,Bisinfactchosen,thenitmustbeacasesuchasthatrepresentedbyI2,whereAcouldnothavebeenbought.IfBwerechosenwhenthebudgetconstraintisI3,thiswouldbeaviolationoftheprincipleofrationalitybecause,withI3,bothAandBcanbebought.WithbudgetconstraintI3,itislikelythatsomepointotherthaneitherAorB(say,C)willbebought.Noticehowthisprincipleusesobservablereactionstoalternativebudgetconstraintstorankcommoditiesratherthanassumingtheexistenceofautilityfunctionitself.AlsonoticeFIGURE5.10DemonstrationofthePrincipleofRationalityintheTheoryofRevealedPreferenceWithincomeI1theindividualcanaffordbothpointsAandB.IfAisselectedthenAisrevealedpreferredtoB.ItwouldbeirrationalforBtoberevealedpreferredtoAinsomeotherprice-incomeconfiguration.Quantity of xQuantityof yyaI1I3I2ybxaxbABC170Part2ChoiceandDemand
howtheprincipleoffersaglimpseofwhyindifferencecurvesareconvex.Nowweturntoaformalproof.NegativityofthesubstitutioneffectSupposethatanindividualisindifferentbetweentwobundles,C(composedofxCandyC)andD(composedofxDandyD).LetpCx,pCybethepricesatwhichbundleCischosenandpDx,pDythepricesatwhichbundleDischosen.BecausetheindividualisindifferentbetweenCandD,itmustbethecasethatwhenCwaschosen,DcostatleastasmuchasC:pCxxCþpCyyCpCxxDþpCyyD.(5.65)AsimilarstatementholdswhenDischosen:pDxxDþpDyyDpDxxCþpDyyC.(5.66)RewritingtheseequationsgivespCxðxCxDÞþpCyðyCyDÞ0,(5.67)pDxðxDxCÞþpDyðyDyCÞ0.(5.68)AddingthesetogetheryieldsðpCxpDxÞðxCxDÞþðpCypDyÞðyCyDÞ0.(5.69)Nowsupposethatonlythepriceofxchanges;assumethatpCy¼pDy.ThenðpCxpDxÞðxCxDÞ0.(5.70)ButEquation5.70saysthatpriceandquantitymoveintheoppositedirectionwhenutilityisheldconstant(remember,bundlesCandDareequallyattractive).Thisispreciselyastatementaboutthenonpositivenatureofthesubstitutioneffect:∂xcðpx,py,VÞ∂px¼∂x∂pxU¼constant0.(5.71)WehavearrivedattheresultbyanapproachthatrequiresneithertheexistenceofautilityfunctionnortheassumptionofadiminishingMRS.MathematicalgeneralizationGeneralizingtherevealedpreferenceideatongoodsisstraightforward.Ifatpricesp0i,bundlex0iischoseninsteadofx1iandifbundlex1iisalsoaffordable,thenXni¼1p0ix0iXni¼1p0ix1i;(5.72)thatis,bundle0hasbeen“revealedpreferred”tobundle1.Consequently,atthepricesthatprevailwhenbundle1isbought(say,p1i),itmustbethecasethatx0iismoreexpensive:Xni¼1p1ix0i>Xni¼1p1ix1i.(5.73)Althoughthisinitialdefinitionofrevealedpreferencefocusesontherelationshipbetweentwobundlesofgoods,themostoftenusedversionofthebasicprinciplerequiresadegreeofChapter5IncomeandSubstitutionEffects171
transitivityforpreferencesamonganarbitrarilylargenumberofbundles.Thisissummarizedbythefollowing“strong”axiom.DEFINITIONStrongaxiomofrevealedpreference.Thestrongaxiomofrevealedpreferencestatesthatifcommoditybundle0isrevealedpreferredtobundle1,andifbundle1isrevealedpreferredtobundle2,andifbundle2isrevealedpreferredtobundle3,…,andifbundleK1isrevealedpreferredtobundleK,thenbundleKcannotberevealedpreferredtobundle0(whereKisanyarbitrarynumberofcommoditybundles).Mostotherpropertiesthatwehavedevelopedusingtheconceptofutilitycanbeprovedusingthisrevealedpreferenceaxiominstead.Forexample,itisaneasymattertoshowthatdemandfunctionsarehomogeneousofdegree0inallpricesandincome.Itthereforeisapparentthattherevealedpreferenceaxiomandtheexistenceof“well-behaved”utilityfunctionsaresomehowequivalentconditions.ThatthisisinfactthecasewasfirstshownbyH.S.Houthakkerin1950.Houthakkershowedthatasetofindifferencecurvescanalwaysbederivedforanindividualwhoobeysthestrongaxiomofrevealedpreference.11Hence,thisaxiomprovidesaquitegeneralandbelievablefoundationforutilitytheorybasedonsimplecomparisonsamongalternativebudgetconstraints.Thisapproachiswidelyusedintheconstructionofpriceindicesandforavarietyofotherappliedpurposes.11H.S.Houthakker,“RevealedPreferenceandtheUtilityFunction,”Economica17(May1950):159–74.SUMMARYInthischapter,weusedtheutility-maximizationmodeltostudyhowthequantityofagoodthatanindividualchoosesrespondstochangesinincomeortochangesinthatgood’sprice.Thefinalresultofthisexaminationisthederivationofthefamiliardownward-slopingdemandcurve.Inarrivingatthatresult,however,wehavedrawnawidevarietyofinsightsfromthegeneraleconomictheoryofchoice.•Proportionalchangesinallpricesandincomedonotshifttheindividual’sbudgetconstraintandthereforedonotchangethequantitiesofgoodschosen.Informalterms,demandfunctionsarehomogeneousofdegree0inallpricesandincome.•Whenpurchasingpowerchanges(thatis,whenincomeincreaseswithpricesremainingunchanged),budgetcon-straintsshiftandindividualswillchoosenewcommoditybundles.Fornormalgoods,anincreaseinpurchasingpowercausesmoretobechosen.Inthecaseofinferiorgoods,however,anincreaseinpurchasingpowercauseslesstobepurchased.Hencethesignof∂xi=∂Icouldbeeitherpositiveornegative,although∂xi=∂I0isthemostcommoncase.•Afallinthepriceofagoodcausessubstitutionandincomeeffectsthat,foranormalgood,causemoreofthegoodtobepurchased.Forinferiorgoods,however,substitutionandincomeeffectsworkinoppositedirec-tionsandnounambiguouspredictionispossible.•Similarly,ariseinpriceinducesbothsubstitutionandincomeeffectsthat,inthenormalcase,causelesstobedemanded.Forinferiorgoodsthenetresultisagainambiguous.•TheMarshalliandemandcurvesummarizesthetotalquantityofagooddemandedateachpossibleprice.Changesinpriceinducebothsubstitutionandincomeeffectsthatpromptmovementsalongthecurve.Foranormalgood,∂xi=∂pi0alongthiscurve.Ifincome,pricesofothergoods,orpreferenceschange,thenthecurvemayshifttoanewlocation.•Compensateddemandcurvesillustratemovementsalongagivenindifferencecurveforalternativeprices.Theyareconstructedbyholdingutilityconstantandexhibitonlythesubstitutioneffectsfromapricechange.Hence,theirslopeisunambiguouslynegative.•Demandelasticitiesareoftenusedinempiricalworktosummarizehowindividualsreacttochangesinpricesandincome.Themostimportantsuchelasticityisthe(own-)priceelasticityofdemand,ex,px.Thismea-surestheproportionatechangeinquantityinresponsetoa1percentchangeinprice.Asimilarelasticitycanbedefinedformovementsalongthecompensatedde-mandcurve.•Therearemanyrelationshipsamongdemandelasticities.Someofthemoreimportantonesare:(1)own-price172Part2ChoiceandDemand
PROBLEMS5.1ThirstyEddrinksonlypurespringwater,buthecanpurchaseitintwodifferent-sizedcontainers:0.75literand2liter.Becausethewateritselfisidentical,heregardsthesetwo“goods”asperfectsubstitutes.a.AssumingEd’sutilitydependsonlyonthequantityofwaterconsumedandthatthecontainersthemselvesyieldnoutility,expressthisutilityfunctionintermsofquantitiesof0.75Lcontain-ers(x)and2Lcontainers(y).b.StateEd’sdemandfunctionforxintermsofpx,py,andI.c.Graphthedemandcurveforx,holdingIandpyconstant.d.HowdochangesinIandpyshiftthedemandcurveforx?e.Whatwouldthecompensateddemandcurveforxlooklikeinthissituation?5.2DavidN.gets$3perweekasanallowancetospendanywayhepleases.Becausehelikesonlypeanutbutterandjellysandwiches,hespendstheentireamountonpeanutbutter(at$0.05perounce)andjelly(at$0.10perounce).Breadisprovidedfreeofchargebyaconcernedneighbor.Davidisaparticulareaterandmakeshissandwicheswithexactly1ounceofjellyand2ouncesofpeanutbutter.Heissetinhiswaysandwillneverchangetheseproportions.a.HowmuchpeanutbutterandjellywillDavidbuywithhis$3allowanceinaweek?b.Supposethepriceofjellyweretoriseto$0.15anounce.Howmuchofeachcommoditywouldbebought?c.ByhowmuchshouldDavid’sallowancebeincreasedtocompensatefortheriseinthepriceofjellyinpart(b)?d.Graphyourresultsinparts(a)to(c).e.Inwhatsensedoesthisprobleminvolveonlyasinglecommodity,peanutbutterandjellysandwiches?Graphthedemandcurveforthissinglecommodity.f.Discusstheresultsofthisproblemintermsoftheincomeandsubstitutioneffectsinvolvedinthedemandforjelly.5.3AsdefinedinChapter3,autilityfunctionishomotheticifanystraightlinethroughtheorigincutsallindifferencecurvesatpointsofequalslope:TheMRSdependsontheratioy=x.a.Provethat,inthiscase,∂x=∂Iisconstant.b.Provethatifanindividual’stastescanberepresentedbyahomotheticindifferencemapthenpriceandquantitymustmoveinoppositedirections;thatis,provethatGiffen’sparadoxcannotoccur.elasticitiesdeterminehowapricechangeaffectstotalspendingonagood;(2)substitutionandincomeeffectscanbesummarizedbytheSlutskyequationinelasticityform;and(3)variousaggregationrelationsholdamongelasticities—theseshowhowthedemandsfordifferentgoodsarerelated.•Welfareeffectsofpricechangescanbemeasuredbychangingareasbeloweithercompensatedorordinarydemandcurves.Suchchangesaffectthesizeofthecon-sumersurplusthatindividualsreceivefrombeingabletomakemarkettransactions.•Thenegativityofthesubstitutioneffectisthemostbasicconclusionfromdemandtheory.Thisresultcanbeshownusingrevealedpreferencetheoryandsodoesnotrequireassumingtheexistenceofautilityfunction.Chapter5IncomeandSubstitutionEffects173
5.4AsinExample5.1,assumethatutilityisgivenbyutility¼Uðx,yÞ¼x0:3y0:7.a.UsetheuncompensateddemandfunctionsgiveninExample5.1tocomputetheindirectutilityfunctionandtheexpenditurefunctionforthiscase.b.Usetheexpenditurefunctioncalculatedinpart(a)togetherwithShephard’slemmatocomputethecompensateddemandfunctionforgoodx.c.Usetheresultsfrompart(b)togetherwiththeuncompensateddemandfunctionforgoodxtoshowthattheSlutskyequationholdsforthiscase.5.5Supposetheutilityfunctionforgoodsxandyisgivenbyutility¼Uðx,yÞ¼xyþy.a.Calculatetheuncompensated(Marshallian)demandfunctionsforxandyanddescribehowthedemandcurvesforxandyareshiftedbychangesinIorthepriceoftheothergood.b.Calculatetheexpenditurefunctionforxandy.c.Usetheexpenditurefunctioncalculatedinpart(b)tocomputethecompensateddemandfunctionsforgoodsxandy.Describehowthecompensateddemandcurvesforxandyareshiftedbychangesinincomeorbychangesinthepriceoftheothergood.5.6Overathree-yearperiod,anindividualexhibitsthefollowingconsumptionbehavior:Isthisbehaviorconsistentwiththestrongaxiomofrevealedpreference?5.7Supposethatapersonregardshamandcheeseaspurecomplements—heorshewillalwaysuseonesliceofhamincombinationwithonesliceofcheesetomakeahamandcheesesandwich.Supposealsothathamandcheesearetheonlygoodsthatthispersonbuysandthatbreadisfree.a.Ifthepriceofhamisequaltothepriceofcheese,showthattheown-priceelasticityofdemandforhamis0.5andthatthecross-priceelasticityofdemandforhamwithrespecttothepriceofcheeseisalso0.5.b.Explainwhytheresultsfrompart(a)reflectonlyincomeeffects,notsubstitutioneffects.Whatarethecompensatedpriceelasticitiesinthisproblem?c.Usetheresultsfrompart(b)toshowhowyouranswerstopart(a)wouldchangeifasliceofhamcosttwicethepriceofasliceofcheese.d.Explainhowthisproblemcouldbesolvedintuitivelybyassumingthispersonconsumesonlyonegood—aham-and-cheesesandwich.pxpyxyYear13374Year24266Year35173174Part2ChoiceandDemand
5.8Showthattheshareofincomespentonagoodxissx¼dlnEdlnpx,whereEistotalexpenditure.AnalyticalProblems5.9ShareelasticitiesIntheExtensionstoChapter4weshowedthatmostempiricalworkindemandtheoryfocusesonincomeshares.Foranygood,x,theincomeshareisdefinedassx¼pxx=I.Inthisproblemweshowthatmostdemandelasticitiescanbederivedfromcorrespondingshareelasticities.a.Showthattheelasticityofagood’sbudgetsharewithrespecttoincomeðesx,I¼∂sx=∂I⋅I=sxÞisequaltoex,I1.Interpretthisconclusionwithafewnumericalexamples.b.Showthattheelasticityofagood’sbudgetsharewithrespecttoitsownpriceðesx,px¼∂sx=∂px⋅px=sxÞisequaltoex,pxþ1.Again,interpretthisfindingwithafewnumericalexamples.c.Useyourresultsfrompart(b)toshowthatthe“expenditureelasticity”ofgoodxwithrespecttoitsownprice½ex⋅px,px¼∂ðpx⋅xÞ=∂px⋅1=xisalsoequaltoex,pxþ1.d.Showthattheelasticityofagood’sbudgetsharewithrespecttoachangeinthepriceofsomeothergoodðesx,py¼∂sx=∂py⋅py=sxÞisequaltoex,py.e.IntheExtensionstoChapter4weshowedthatwithaCESutilityfunction,theshareofincomedevotedtogoodxisgivenbysx¼1=ð1þpkypkxÞ,wherek¼δ=ðδ1Þ¼1σ.UsethisshareequationtoproveEquation5.56:exc,px¼ð1sxÞσ.Hint:Thisproblemcanbesimplifiedbyassumingpx¼py,inwhichcasesx¼0:5.5.10MoreonelasticitiesPart(e)ofProblem5.9hasanumberofusefulapplicationsbecauseitshowshowpriceresponsesdependultimatelyontheunderlyingparametersoftheutilityfunction.Specifically,usethatresulttogetherwiththeSlutskyequationinelasticitytermstoshow:a.IntheCobb-Douglascaseðσ¼1Þ,thefollowingrelationshipholdsbetweentheown-priceelasticitiesofxandy:ex,pxþey,py¼2.b.Ifσ>1thenex,pxþey,py<2,andifσ<1thenex,pxþey,py>2.Provideanintuitiveexplanationforthisresult.c.Howwouldyougeneralizethisresulttocasesofmorethantwogoods?Discusswhethersuchageneralizationwouldbeespeciallymeaningful.5.11AggregationofelasticitiesformanygoodsThethreeaggregationrelationshipspresentedinthischaptercanbegeneralizedtoanynumberofgoods.Thisproblemasksyoutodoso.Weassumethattherearengoodsandthattheshareofincomedevotedtogoodiisdenotedbysi.Wealsodefinethefollowingelasticities:ei,I¼∂xi∂I⋅Ixi,ei,j¼∂xi∂pj⋅Ixi.Usethisnotationtoshow:a.Homogeneity:Pnj¼1ei,jþei,I¼0.b.Engelaggregation:Pni¼1siei,I¼1.c.Cournotaggregation:Pni¼1siei,j¼sj.Chapter5IncomeandSubstitutionEffects175
5.12Quasi-linearutility(revisited)Considerasimplequasi-linearutilityfunctionoftheformUðx,yÞ¼xþlny.a.Calculatetheincomeeffectforeachgood.Alsocalculatetheincomeelasticityofdemandforeachgood.b.Calculatethesubstitutioneffectforeachgood.Alsocalculatethecompensatedown-priceelasticityofdemandforeachgood.c.ShowthattheSlutskyequationappliestothisfunction.d.ShowthattheelasticityformoftheSlutskyequationalsoappliestothisfunction.Describeanyspecialfeaturesyouobserve.5.13ThealmostidealdemandsystemThegeneralformofthealmostidealdemandsystem(AIDS)isgivenbylnEð!p,UÞ¼a0þXni¼1αilnpiþ12Xni¼1Xnj¼1γijlnpilnpjþUβ0∏ki¼1pβkk,where!pisthevectorofprices,Eistheexpenditurefunction,andUisthelevelofutilityrequired.Foranalyticalease,assumethatthefollowingrestrictionsapply:γij¼γji,Xni¼1αi¼1,andXnj¼1γij¼Xnk¼1βk¼0.a.DerivetheAIDSfunctionalformforatwo-goodscase.b.Giventhepreviousrestrictions,showthatEð!p,UÞishomogeneousofdegree1inallprices.This,alongwiththefactthatthisfunctionresemblescloselytheactualdata,makesitan“ideal”function.c.Usingthefactthatsx¼dlnEdlnpx(seeProblem5.8),calculatetheincomeshareofeachofthetwogoods.5.14PriceindifferencecurvesPriceindifferencecurvesareiso-utilitycurveswiththepricesoftwogoodsonthex-andy-axes,respectively.Thus,theyhavethefollowinggeneralform:ðp1,p2Þjvðp1,p2,IÞ¼v0.a.DerivetheformulaforthepriceindifferencecurvesfortheCobb-Douglascasewithα¼β¼0:5.Sketchoneofthem.b.Whatdoestheslopeofthecurveshow?c.Whatisthedirectionofincreasingutilityinyourgraph?SUGGESTIONSFORFURTHERREADINGCook,P.J.“A‘OneLine’ProofoftheSlutskyEquation.”AmericanEconomicReview62(March1972):139.CleveruseofdualitytoderivetheSlutskyequation;usesthesamemethodasinChapter5butwithrathercomplexnotation.Fisher,F.M.,andK.Shell.TheEconomicTheoryofPriceIndices.NewYork:AcademicPress,1972.Complete,technicaldiscussionoftheeconomicpropertiesofvariouspriceindexes;describes“ideal”indexesbasedonutility-maximizingmodelsindetail.Mas-Colell,Andreu,MichaelD.Whinston,andJerryR.Green.MicroeconomicTheory.NewYork:OxfordUniversityPress,1995.Chapter3coversmuchofthematerialinthischapteratasomewhathigherlevel.SectionIonmeasurementofthewelfareeffectsofpricechangesisespeciallyrecommended.Samuelson,PaulA.FoundationsofEconomicAnalysis.Cambridge,MA:HarvardUniversityPress,1947,Chap.5.Providesacompleteanalysisofsubstitutionandincomeeffects.Alsodevelopstherevealedpreferencenotion.176Part2ChoiceandDemand
Silberberg,E.,andW.Suen.TheStructureofEconomics:AMathematicalAnalysis,3rded.Boston:Irwin/McGraw-Hill,2001.ProvidesanextensivederivationoftheSlutskyequationandalengthypresentationofelasticityconcepts.Sydsaetter,K.,A.Strom,andP.Berck.Economist’sMathematicalManual.Berlin:Springer-Verlag,2003.Providesacompactsummaryofelasticityconcepts.Thecoverageofelasticityofsubstitutionnotionsisespeciallycomplete.Varian,H.MicroeconomicAnalysis,3rded.NewYork:W.W.Norton,1992.Formaldevelopmentofpreferencenotions.Extensiveuseofexpendi-turefunctionsandtheirrelationshiptotheSlutskyequation.AlsocontainsaniceproofofRoy‘sidentity.Chapter5IncomeandSubstitutionEffects177
EXTENSIONSDemandConceptsandtheEvaluationofPriceIndicesInChapters4and5weintroducedanumberofrelateddemandconcepts,allofwhichwerederivedfromtheunderlyingmodelofutilitymaximization.Relation-shipsamongthesevariousconceptsaresummarizedinFigureE5.1.Wehavealreadylookedatmostofthelinksinthetableformally.WehavenotyetdiscussedthemathematicalrelationshipbetweenindirectutilityfunctionsandMarshalliandemandfunctions(Roy’sidentity),andwewilldothatbelow.Alloftheentriesinthetablemakeclearthattherearemanywaystolearnsomethingabouttherelationshipbetweenin-dividuals’welfareandthepricestheyface.Inthisex-tensionwewillexploresomeoftheseapproaches.Specifically,wewilllookathowtheconceptscanshedlightontheaccuracyoftheconsumerpriceindex(CPI),theprimarymeasureofinflationintheUnitedStates.Wewillalsolookatafewotherpriceindexconcepts.TheCPIisa“marketbasket”indexofthecostofliving.Researchersmeasuretheamountsthatpeopleconsumeofasetofgoodsinsomebaseperiod(inthetwo-goodcasethesebase-periodconsumptionlevelsmightbedenotedbyx0andy0)andthenusecurrentpricedatatocomputethechangingpriceofthismar-ketbasket.Usingthisprocedure,thecostofthemarketbasketinitiallywouldbeI0¼p0xx0þp0yy0andthecostinperiod1wouldbeI1¼p1xx0þp1yy0.ThechangeinthecostoflivingbetweenthesetwoperiodswouldthenbemeasuredbyI1=I0.Althoughthispro-cedureisanintuitivelyplausiblewayofmeasuringin-flationandmarketbasketpriceindicesarewidelyused,suchindiceshavemanyshortcomings.E5.1ExpenditurefunctionsandsubstitutionbiasMarket-basketpriceindicessufferfrom“substitutionbias.”Becausetheindicesdonotpermitindividualstomakesubstitutionsinthemarketbasketinresponsetochangesinrelativeprices,theywilltendtooverstateFIGUREE5.1RelationshipsamongDemandConceptsPrimalDualInversesShephard’s lemmaRoy’s identityMaximize U(x,y)s.t. I=Pxx+PyyIndirect utility functionU*=V(px,py,I)Minimize E(x,y)s.t. U=U(x, y)x(px, py, I)= –Marshallian demandxc(px, py, U)=∂E∂pxCompensated demandExpenditure functionE* = E(px, py, U)∂px∂I∂V∂V178Part2ChoiceandDemand
thewelfarelossesthatpeopleincurfromrisingprices.ThisexaggerationisillustratedinFigureE5.2.ToachievetheutilitylevelU0initiallyrequiresexpendi-turesofE0,resultinginapurchaseofthebasketx0,y0.Ifpx=pyfalls,theinitialutilitylevelcannowbeob-tainedwithexpendituresofE1byalteringtheconsumptionbundletox1,y1.Computingtheexpen-diturelevelneededtocontinueconsumingx0,y0exaggerateshowmuchextrapurchasingpowerthispersonneedstorestorehisorherlevelofwell-being.Economistshaveextensivelystudiedtheextentofthissubstitutionbias.AizcorbeandJackman(1993),forexample,findthatthisdifficultywithamarketbasketindexmayexaggeratethelevelofinflationshownbytheCPIbyabout0.2percentperyear.E5.2Roy’sidentityandnewgoodsbiasWhennewgoodsareintroduced,ittakessometimeforthemtobeintegratedintotheCPI.Forexample,Hausman(1999,2003)statesthatittookmorethan15yearsforcellphonestoappearintheindex.Theproblemwiththisdelayisthatmarketbasketindiceswillfailtoreflectthewelfaregainsthatpeopleexperi-encefromusingnewgoods.Tomeasurethesecosts,Hausmansoughttomeasurea“virtual”price(p)atwhichthedemandfor,say,cellphoneswouldbezeroandthenarguedthattheintroductionofthegoodatitsmarketpricerepresentedachangeinconsumersurplusthatcouldbemeasured.Hence,theauthorFIGUREE5.2SubstitutionBiasintheCPIInitiallyexpendituresaregivenbyE0andthisindividualbuysx0,y0.Ifpx=pyfalls,utilitylevelU0canbereachedmostcheaplybyconsumingx1,y1andspendingE1.Purchasingx0,y0atthenewpriceswouldcostmorethanE1.Hence,holdingtheconsumptionbundleconstantimpartsanupwardbiastoCPI-typecomputations.E0U0E1x0y0x1Quantity of xQuantityof yChapter5IncomeandSubstitutionEffects179
wasfacedwiththeproblemofhowtogetfromtheMarshalliandemandfunctionforcellphones(whichheestimatedeconometrically)totheexpenditurefunction.TodosoheusedRoy’sidentity(seeRoy,1942).Rememberthattheconsumer’sutility-maxi-mizingproblemcanberepresentedbytheLagrangianexpressionℒ¼Uðx,yÞþλðIpxxpyyÞ.Ifweapplytheenvelopetheoremtothisexpression,weknowthat∂U∂px¼∂ℒ∂px¼λxðpx,py,IÞ,∂U∂I¼∂ℒ∂I¼λ.(i)HencetheMarshalliandemandfunctionisgivenbyxðpx,py,IÞ¼∂U=∂px∂U=∂I.(ii)UsinghisestimatesoftheMarshalliandemandfunction,HausmanintegratedEquationiitoobtain-theimpliedindirectutilityfunctionandthencalculat-editsinverse,theexpenditurefunction(checkFigureE5.1toseethelogicoftheprocess).Thoughthiscertainlyisaroundaboutscheme,itdidyieldlargeestimatesforthegaininconsumerwelfarefromcellphones—apresentvaluein1999ofmorethan$100billion.DelaysintheinclusionofsuchgoodsintotheCPIcanthereforeresultinamisleadingmeasureofconsumerwelfare.E5.3OthercomplaintsabouttheCPIResearchershavefoundseveralotherfaultswiththeCPIascurrentlyconstructed.Mostofthesefocusontheconsequencesofusingincorrectpricestocomputetheindex.Forexample,whenthequalityofagoodimproves,peoplearemadebetter-off,thoughthismaynotshowupinthegood’sprice.Throughoutthe1970sand1980sthereliabilityofcolortelevisionsetsimproveddramatically,butthepriceofasetdidnotchangeverymuch.Amarketbasketthatincluded“onecolortelevisionset”wouldmissthissourceofimprovedwelfare.Similarly,theopeningof“bigbox”retailerssuchasCostcoandHomeDepotduringthe1990sundoubtedlyreducedthepricesthatconsumerspaidforvariousgoods.ButincludingthesenewretailoutletsintothesampleschemefortheCPItooksev-eralyears,sotheindexmisrepresentedwhatpeoplewereactuallypaying.AssessingthemagnitudeoferrorintroducedbythesecaseswhereincorrectpricesareusedintheCPIcanalsobeaccomplishedbyusingthevariousdemandconceptsinFigureE5.1.Forasum-maryofthisresearch,seeMoulton(1996).E5.4ExactpriceindicesInprinciple,itispossiblethatsomeoftheshortcom-ingsofpriceindicessuchastheCPImightbeamelio-ratedbymorecarefulattentiontodemandtheory.Iftheexpenditurefunctionfortherepresentativecon-sumerwereknown,forexample,itwouldbepossibletoconstructan“exact”indexforchangesinpurchas-ingpowerthatwouldtakecommoditysubstitutionintoaccount.Toillustratethis,supposethereareonlytwogoodsandwewishtoknowhowpurchasingpowerhaschangedbetweenperiod1andperiod2.IftheexpenditurefunctionisgivenbyEðpx,py,UÞthentheratioI1,2¼Eðp2x,p2y,_UÞEðp1x,p1y,_UÞ(iii)showshowthecostofattainingthetargetutilitylevelU_haschangedbetweenthetwoperiods.If,forexample,I1,2¼1:04,thenwewouldsaythatthecostofattainingtheutilitytargethadincreasedby4per-cent.Ofcourse,thisanswerisonlyaconceptualone.Withoutknowingtherepresentativeperson’sutilityfunction,wewouldnotknowthespecificformoftheexpenditurefunction.ButinsomecasesEquationiiimaysuggesthowtoproceedinindexconstruction.Suppose,forexample,thatthetypicalperson’spref-erencescouldberepresentedbytheCobb-DouglasutilityfunctionUðx,yÞ¼xαy1α.Inthiscaseitiseasytoshowthattheexpenditurefunctionisagen-eralizationoftheonegiveninExample4.4:Eðpx,py,UÞ¼pαxp1αyU=ααð1αÞ1α¼kpαxp1αyU.InsertingthisfunctionintoEquationiiiyieldsI1,2¼kðp2xÞαðp2yÞ1α_Ukðp1xÞαðp1yÞ1α_U¼ðp2xÞαðp2yÞ1αðp1xÞαðp1yÞ1α.(iv)So,inthiscase,theexactpriceindexisarelativelysimplefunctionoftheobservedprices.Theparticularlyusefulfeatureofthisexampleisthattheutilitytargetcancelsoutintheconstructionofthecost-of-livingindex(asitwillanytimetheexpenditurefunctionishomogeneousinutility).Noticealsothattheexpendi-tureshares(αand1α)playanimportantroleintheindex—thelargeragood’sshare,themoreimpor-tantwillchangesbeinthatgood’spriceinthefinalindex.180Part2ChoiceandDemand
E5.5DevelopmentofexactpriceindicesTheCobb-Douglasutilityfunctionis,ofcourse,averysimpleone.Muchrecentresearchonpriceindiceshasfocusedonmoregeneraltypesofutilityfunctionsandonthediscoveryoftheexactpriceindicestheyimply.Forexample,FeenstraandReinsdorf(2000)showthatthealmostidealdemandsystemdescribedintheExtensionstoChapter4impliesanexactpriceindex(I)thattakesa“Divisia”form:lnðIÞ¼Xni¼1wi∆lnpi(v)(herethewiareweightstobeattachedtothechangeinthelogarithmofeachgood’sprice).OftentheweightsinEquationvaretakentobethebudgetsharesofthegoods.Interestingly,thisispreciselythepriceindeximpliedbytheCobb-DouglasutilityfunctioninEquationiv,sincelnðI1;2Þ¼αlnp2xþð1αÞlnp2yαlnp1xð1αÞlnp1y¼α∆lnpxþð1−αÞ∆lnpy.(vi)Inactualapplications,theweightswouldchangefromperiodtoperiodtoreflectchangingbudgetshares.Similarly,changesoverseveralperiodswouldbe“chained”togetherfromanumberofsingle-periodpricechangeindices.ChangingdemandsforfoodinChina.Chinahasoneofthefastestgrowingeconomiesintheworld:itsGDPpercapitaiscurrentlygrowingatarateofabout8percentperyear.Chineseconsumersalsospendalargefractionoftheirincomesonfood—approximately38percentoftotalexpendituresinrecentsurveydata.OneimplicationoftherapidgrowthinChineseincomes,however,isthatpatternsoffoodconsump-tionarechangingrapidly.Purchasesofstaples,suchasriceorwheat,aredeclininginrelativeimportance,whereaspurchasesofpoultry,fish,andprocessedfoodsaregrowingrapidly.ArecentpaperbyGouldandVillarreal(2006)studiesthesepatternsindetailusingtheAIDSmodel.Theyidentifyavarietyofsub-stitutioneffectsacrossspecificfoodcategoriesinre-sponsetochangingrelativeprices.Suchchangingpatternsimplythatafixedmarketbasketpriceindex(suchastheU.S.ConsumerPriceIndex)wouldbeparticularlyinappropriateformeasuringchangesinthecostoflivinginChinaandthatsomealternativeapproachesshouldbeexamined.ReferencesAizcorbe,AnaM.,andPatrickC.Jackman.“TheCom-moditySubstitutionEffectinCPIData,1982–91.”MonthlyLaborReview(December1993):25–33.Feenstra,RobertC.,andMarshallB.Reinsdorf.“AnExactPriceIndexfortheAlmostIdealDemandSystem.”EconomicsLetters(February2000):159–62.Gould,BrainW.,andHectorJ.Villarreal.“AnAssessmentoftheCurrentStructureofFoodDemandinUrbanChina.”AgriculturalEconomics(January2006):1–16.Hausman,Jerry.“CellularTelephone,NewProducts,andtheCPI.”JournalofBusinessandEconomicStatistics(April1999):188–94.Hausman,Jerry.“SourcesofBiasandSolutionstoBiasintheConsumerPriceIndex.”JournalofEconomicPerspectives(Winter2003):23–44.Moulton,BrentR.“BiasintheConsumerPriceIndex:WhatIstheEvidence?”JournalofEconomicPerspectives(Fall1996):159–77.Roy,R.Del’utilité,contributionàlathéoriedeschoix.Paris:Hermann,1942.Chapter5IncomeandSubstitutionEffects181
CHAPTER6DemandRelationshipsamongGoodsInChapter5weexaminedhowchangesinthepriceofaparticulargood(say,goodx)affectthequantityofthatgoodchosen.Throughoutthediscussion,weheldthepricesofallothergoodsconstant.Itshouldbeclear,however,thatachangeinoneoftheseotherpricescouldalsoaffectthequantityofxchosen.Forexample,ifxweretakentorepresentthequantityofautomobilemilesthatanindividualdrives,thisquantitymightbeexpectedtodeclinewhenthepriceofgasolinerisesorincreasewhenairandbusfaresrise.Inthischapterwewillusetheutility-maximizationmodeltostudysuchrelationships.THETWO-GOODCASEWebeginourstudyofthedemandrelationshipamonggoodswiththetwo-goodcase.Unfortunately,thiscaseprovestoberatheruninterestingbecausethetypesofrelationshipsthatcanoccurwhenthereareonlytwogoodsarequitelimited.Still,thetwo-goodcaseisusefulbecauseitcanbeillustratedwithtwo-dimensionalgraphs.Figure6.1startsourex-aminationbyshowingtwoexamplesofhowthequantityofxchosenmightbeaffectedbyachangeinthepriceofy.Inbothpanelsofthefigure,pyhasfallen.ThishastheresultofshiftingthebudgetconstraintoutwardfromI0toI1.Inbothcases,thequantityofgoodychosenhasalsoincreasedfromy0toy1asaresultofthedeclineinpy,aswouldbeexpectedifyisanormalgood.Forgoodx,however,theresultsshowninthetwopanelsdiffer.In(a)theindifferencecurvesarenearlyL-shaped,implyingafairlysmallsubstitutioneffect.AdeclineinpydoesnotinduceaverylargemovealongU0asyissubstitutedforx.Thatis,xdropsrelativelylittleasaresultofthesubstitution.Theincomeeffect,however,reflectsthegreaterpurchasingpowernowavailable,andthiscausesthetotalquantityofxchosentoincrease.Hence,∂x=∂pyisnegative(xandpymoveinoppositedirections).InFigure6.1bthissituationisreversed:∂x=∂pyispositive.TherelativelyflatindifferencecurvesinFigure6.1bresultinalargesubstitutioneffectfromthefallinpy.ThequantityofxdeclinessharplyasyissubstitutedforxalongU0.AsinFigure6.1a,theincreasedpurchasingpowerfromthedeclineinpycausesmorextobebought,butnowthesubstitutioneffectdominatesandthequantityofxdeclinestox1.Inthiscase,then,xandpymoveinthesamedirection.AmathematicaltreatmentTheambiguityintheeffectofchangesinpycanbefurtherillustratedbyaSlutsky-typeequation.ByusingproceduressimilartothoseinChapter5,itisfairlysimpletoshowthat∂xðpx,py,IÞ∂py¼substitutioneffectþincomeeffect¼∂x∂pyU¼constanty⋅∂x∂I,(6.1)182
or,inelasticityterms,ex,py¼exc,pysyex,I.(6.2)Noticethatthesizeoftheincomeeffectisdeterminedbytheshareofgoodyinthisperson’spurchases.Theimpactofachangeinpyonpurchasingpowerisdeterminedbyhowim-portantyistothisperson.Forthetwo-goodcase,thetermsontherightsideofEquations6.1and6.2havedifferentsigns.Assumingthatindifferencecurvesareconvex,thesubstitutioneffect∂x=∂pyjU¼constantispositive.Ifweconfineourselvestomovesalongoneindifferencecurve,increasesinpyincreasexanddecreasesinpydecreasethequantityofxchosen.But,assumingxisanormalgood,theincomeeffect(y∂x=∂Iorsyex,I)isclearlynegative.Hence,thecombinedeffectisambiguous;∂x=∂pycouldbeeitherpositiveornegative.Eveninthetwo-goodcase,thedemandrelationshipbetweenxandpyisrathercomplex.EXAMPLE6.1AnotherSlutskyDecompositionforCross-PriceEffectsInExample5.4weexaminedtheSlutskydecompositionfortheeffectofachangeinthepriceofx.Nowlet’slookatthecross-priceeffectofachangeinypricesonxpurchases.Rememberthattheuncompensatedandcompensateddemandfunctionsforxaregivenbyxðpx,py,IÞ¼0:5Ipx(6.3)andxcðpx,py,VÞ¼Vp0:5yp0:5x.(6.4)(continued)FIGURE6.1DifferingDirectionsofCross-PriceEffectsInbothpanels,thepriceofyhasfallen.In(a),substitu-tioneffectsaresmallsothequantityofxconsumedincreasesalongwithy.Because∂x=∂py<0,xandyaregrosscomplements.In(b),substitutioneffectsarelargesothequantityofxchosenfalls.Because∂x=∂py>0,xandywouldbetermedgrosssubstitutes.Quantityof xQuantityof xQuantity of yQuantity of y(a) Gross complements(b) Gross substitutesx0y0y1x1y0y1x1x0I0I0I1I1U0U1U0U1Chapter6DemandRelationshipsamongGoods183
EXAMPLE6.1CONTINUEDAswehavepointedoutbefore,theMarshalliandemandfunctioninthiscaseyields∂x=∂py¼0;thatis,changesinthepriceofydonotaffectxpurchases.Nowweshowthatthisoccursbecausethesubstitutionandincomeeffectsofapricechangearepreciselycounterbalancing.Thesubstitutioneffectinthiscaseisgivenby∂x∂pyU¼constant¼∂xc∂py¼0:5Vp0:5yp0:5x.(6.5)SubstitutingforVfromtheindirectutilityfunction(V¼0:5Ip0:5yp0:5x)givesafinalstate-mentforthesubstitutioneffect:∂x∂pyU¼constant¼0:25Ip1yp1x.(6.6)ReturningtotheMarshalliandemandfunctionforyðy¼0:5Ip1y)tocalculatetheincomeeffectyieldsy∂x∂I¼½0:5Ip1y⋅½0:5p1x¼0:25Ip1yp1x,(6.7)andcombiningEquations6.6and6.7givesthetotaleffectofthechangeinthepriceofyas∂x∂py¼0:25Ip1yp1x0:25Ip1yp1x¼0.(6.8)ThismakesclearthatthereasonthatchangesinthepriceofyhavenoeffectonxpurchasesintheCobb-Douglascaseisthatthesubstitutionandincomeeffectsfromsuchachangearepreciselyoffsetting;neitheroftheeffectsalone,however,iszero.Returningtoournumericalexample(px¼1,py¼4,I¼8,V¼2),supposenowthatpyfallsto2.ThisshouldhavenoeffectontheMarshalliandemandforgoodx.Thecompen-sateddemandfunctioninEquation6.4showsthatthepricechangewouldcausethequantityofxdemandedtodeclinefrom4to2.83(¼2ffiffiffi2p)asyissubstitutedforxwithutilityunchanged.However,theincreasedpurchasingpowerarisingfromthepricedeclinepreciselyreversesthiseffect.QUERY:Whywoulditbeincorrecttoarguethatif∂x=∂py¼0,thenxandyhavenosubstitutionpossibilities—thatis,theymustbeconsumedinfixedproportions?Isthereanycaseinwhichsuchaconclusioncouldbedrawn?SUBSTITUTESANDCOMPLEMENTSWithmanygoods,thereismuchmoreroomforinterestingrelationsamonggoods.ItisrelativelyeasytogeneralizetheSlutskyequationforanytwogoodsxi,xjas∂xiðp1,…,pn,IÞ∂pj¼∂xi∂pjU¼constantxj∂xi∂I,(6.9)andagainthiscanbereadilytranslatedintoanelasticityrelation:ei,j¼eci,jsjei,I.(6.10)Thissaysthatthechangeinthepriceofanygood(here,goodj)inducesincomeandsubstitutioneffectsthatmaychangethequantityofeverygooddemanded.Equations6.9and6.10canbeusedtodiscusstheideaofsubstitutesandcomplements.Intuitively,theseideasare184Part2ChoiceandDemand
rathersimple.Twogoodsaresubstitutesifonegoodmay,asaresultofchangedconditions,replacetheotherinuse.Someexamplesareteaandcoffee,hamburgersandhotdogs,andbutterandmargarine.Complements,ontheotherhand,aregoodsthat“gotogether,”suchascoffeeandcream,fishandchips,orbrandyandcigars.Insomesense,“substitutes”substituteforoneanotherintheutilityfunctionwhereas“complements”complementeachother.Therearetwodifferentwaystomaketheseintuitiveideasprecise.Oneofthesefocusesonthe“gross”effectsofpricechangesbyincludingbothincomeandsubstitutioneffects;theotherlooksatsubstitutioneffectsalone.Becausebothdefinitionsareused,wewillexamineeachindetail.GrosssubstitutesandcomplementsWhethertwogoodsaresubstitutesorcomplementscanbeestablishedbyreferringtoobservedpricereactionsasfollows.DEFINITIONGrosssubstitutesandcomplements.Twogoods,xiandxj,aresaidtobegrosssubsti-tutesif∂xi∂pj>0(6.11)andgrosscomplementsif∂xi∂pj<0.(6.12)Thatis,twogoodsaregrosssubstitutesifariseinthepriceofonegoodcausesmoreoftheothergoodtobebought.Thegoodsaregrosscomplementsifariseinthepriceofonegoodcauseslessoftheothergoodtobepurchased.Forexample,ifthepriceofcoffeerises,thedemandforteamightbeexpectedtoincrease(theyaresubstitutes),whereasthedemandforcreammightdecrease(coffeeandcreamarecomplements).Equation6.9makesitclearthatthisdefinitionisa“gross”definitioninthatitincludesbothincomeandsubstitutioneffectsthatarisefrompricechanges.Becausetheseeffectsareinfactcombinedinanyreal-worldobservationwecanmake,itmightbereasonablealwaystospeakonlyof“gross”substitutesand“gross”complements.AsymmetryofthegrossdefinitionsThereare,however,severalthingsthatareundesirableaboutthegrossdefinitionsofsub-stitutesandcomplements.Themostimportantoftheseisthatthedefinitionsarenotsymmetric.Itispossible,bythedefinitions,forx1tobeasubstituteforx2andatthesametimeforx2tobeacomplementofx1.Thepresenceofincomeeffectscanproduceparadoxicalresults.Let’slookataspecificexample.EXAMPLE6.2AsymmetryinCross-PriceEffectsSupposetheutilityfunctionfortwogoods(xandy)hasthequasi-linearformUðx,yÞ¼lnxþy.(6.13)SettinguptheLagrangianexpressionℒ¼lnxþyþλðIpxxpyyÞ(6.14)(continued)Chapter6DemandRelationshipsamongGoods185
EXAMPLE6.2CONTINUEDyieldsthefollowingfirst-orderconditions:∂ℒ∂x¼1xλpx¼0,∂ℒ∂y¼1λpy¼0,∂ℒ∂λ¼Ipxxpyy¼0.(6.15)Movingthetermsinλtotherightanddividingthefirstequationbythesecondyields1x¼pxpy,(6.16)pxx¼py.(6.17)SubstitutionintothebudgetconstraintnowpermitsustosolvefortheMarshalliandemandfunctionfory:I¼pxxþpyy¼pyþpyy.(6.18)Hence,y¼Ipypy.(6.19)Thisequationshowsthatanincreaseinpymustdecreasespendingongoody(thatis,pyy).Therefore,sincepxandIareunchanged,spendingonxmustrise.So∂x∂py>0,(6.20)andwewouldtermxandygrosssubstitutes.Ontheotherhand,Equation6.19showsthatspendingonyisindependentofpx.Consequently,∂y∂px¼0(6.21)and,lookedatinthisway,xandywouldbesaidtobeindependentofeachother;theyareneithergrosssubstitutesnorgrosscomplements.Relyingongrossresponsestopricechangestodefinetherelationshipbetweenxandywouldthereforerunintoambiguity.QUERY:InExample3.4,weshowedthatautilityfunctionoftheformgivenbyEquation6.13isnothomothetic:theMRSdoesnotdependonlyontheratioofxtoy.Canasymmetryariseinthehomotheticcase?NETSUBSTITUTESANDCOMPLEMENTSBecauseofthepossibleasymmetriesinvolvedinthedefinitionofgrosssubstitutesandcomplements,analternativedefinitionthatfocusesonlyonsubstitutioneffectsisoftenused.DEFINITIONNetsubstitutesandcomplements.Goodsxiandxjaresaidtobenetsubstitutesif∂xi∂pjU¼constant>0(6.22)186Part2ChoiceandDemand
andnetcomplementsif∂xi∂pjU¼constant<0.(6.23)Thesedefinitions,1then,lookonlyatthesubstitutiontermstodeterminewhethertwogoodsaresubstitutesorcomplements.Thisdefinitionisbothintuitivelyappealing(becauseitlooksonlyattheshapeofanindifferencecurve)andtheoreticallydesirable(becauseitisunambig-uous).Oncexiandxjhavebeendiscoveredtobesubstitutes,theystaysubstitutes,nomatterinwhichdirectionthedefinitionisapplied.Asamatteroffact,thedefinitionsareperfectlysymmetric:∂xi∂pjU¼constant¼∂xj∂piU¼constant.(6.24)Thesubstitutioneffectofachangeinpiongoodxjisidenticaltothesubstitutioneffectofachangeinpjonthequantityofxichosen.Thissymmetryisimportantinboththeoreticalandempiricalwork.2ThedifferencesbetweenthetwodefinitionsofsubstitutesandcomplementsareeasilydemonstratedinFigure6.1a.Inthisfigure,xandyaregrosscomplements,buttheyarenetsubstitutes.Thederivative∂x=∂pyturnsouttobenegative(xandyaregrosscomplements)becausethe(positive)substitutioneffectisoutweighedbythe(negative)incomeeffect(afallinthepriceofycausesrealincometoincreasegreatly,and,consequently,actualpurchasesofxincrease).However,asthefiguremakesclear,ifthereareonlytwogoodsfromwhichtochoose,theymustbenetsubstitutes,althoughtheymaybeeithergrosssubstitutesorgrosscomplements.BecausewehaveassumedadiminishingMRS,theown-pricesub-stitutioneffectmustbenegativeand,consequently,thecross-pricesubstitutioneffectmustbepositive.SUBSTITUTABILITYWITHMANYGOODSOncetheutility-maximizingmodelisextendedtomanygoods,awidevarietyofdemandpatternsbecomepossible.Whetheraparticularpairofgoodsarenetsubstitutesornetcomplementsisbasicallyaquestionofaperson’spreferences,soonemightobserveallsortsofoddrelationships.Amajortheoreticalquestionthathasconcernedeconomistsiswhethersubstitutabilityorcomplementarityismoreprevalent.Inmostdiscussions,wetendtoregardgoodsassubstitutes(apriceriseinonemarkettendstoincreasedemandinmostothermarkets).Itwouldbenicetoknowwhetherthisintuitionisjustified.1Thesearesometimescalled“Hicksian”substitutesandcomplements,namedaftertheBritisheconomistJohnHicks,whooriginallydevelopedthedefinitions.2ThissymmetryiseasilyshownusingShephard’slemma.Compensateddemandfunctionscanbecalculatedfromex-penditurefunctionsbydifferentiation:xciðp1,…,pn,VÞ¼∂Eðp1,…,pn,VÞ∂pi.Hence,thesubstitutioneffectisgivenby∂xi∂pjU¼constant¼∂xci∂pj¼∂2E∂pj∂pi¼Eij.ButnowwecanapplyYoung’stheoremtotheexpenditurefunction:Eij¼Eji¼∂xcj∂pi¼∂xj∂piU¼constant,whichprovesthesymmetry.Chapter6DemandRelationshipsamongGoods187
TheBritisheconomistJohnHicksstudiedthisissueinsomedetailabout50yearsagoandreachedtheconclusionthat“most”goodsmustbesubstitutes.Theresultissummarizedinwhathascometobecalled“Hicks’secondlawofdemand.”3Amodernproofstartswiththecompensateddemandfunctionforaparticulargood:xciðp1,…,pn,VÞ.Thisfunctionishomogeneousofdegree0inallprices(ifutilityisheldconstantandpricesdouble,quantitiesdemandeddonotchangebecausetheutility-maximizingtangenciesdonotchange).Apply-ingEuler’stheoremtothefunctionyieldsp1⋅∂xci∂p1þp2⋅∂xci∂p2þ…þpn⋅∂xci∂pn¼0.(6.25)WecanputthisresultintoelasticitytermsbydividingEquation6.25byxi:eci1þeci2þ…þecin¼0.(6.26)Butweknowthatecii0becauseofthenegativityoftheown-substitutioneffect.HenceitmustbethecasethatXj≠iecij0.(6.27)Inwords,thesumofallthecompensatedcross-priceelasticitiesforaparticulargoodmustbepositive(orzero).Thisisthesensethat“most”goodsaresubstitutes.Empiricalevidenceseemsgenerallyconsistentwiththistheoreticalfinding:instancesofnetcom-plementaritybetweengoodsareencounteredrelativelyinfrequentlyinempiricalstudiesofdemand.COMPOSITECOMMODITIESOurdiscussionintheprevioussectionshowedthatthedemandrelationshipsamonggoodscanbequitecomplicated.Inthemostgeneralcase,anindividualwhoconsumesngoodswillhavedemandfunctionsthatreflectnðnþ1Þ=2differentsubstitutioneffects.4Whennisverylarge(asitsurelyisforallthespecificgoodsthatindividualsactuallyconsume),thisgeneralcasecanbeunmanageable.Itisoftenfarmoreconvenienttogroupgoodsintolargeraggregatessuchasfood,clothing,shelter,andsoforth.Atthemostextremelevelofaggregates,wemightwishtoexamineonespecificgood(say,gasoline,whichwemightcallx)anditsrelationshipto“allothergoods,”whichwemightcally.Thisistheprocedurewehavebeenusinginsomeofourtwo-dimensionalgraphs,andwewillcontinuetodosoatmanyotherplacesinthisbook.Inthissectionweshowtheconditionsunderwhichthisprocedurecanbedefended.IntheExtensionstothischapter,weexploremoregeneralissuesinvolvedinaggregatinggoodsintolargergroupings.CompositecommoditytheoremSupposeconsumerschooseamongngoodsbutthatweareonlyinterestedspecificallyinoneofthem—say,x1.Ingeneral,thedemandforx1willdependontheindividualpricesoftheothern1commodities.Butifallthesepricesmovetogether,itmaymakesenseto3SeeJohnHicks,ValueandCapital(Oxford:OxfordUniversityPress,1939),mathematicalappendices.ThereissomedebateaboutwhetherthisresultshouldbecalledHicks’“second”or“third”law.Infact,twootherlawsthatwehavealreadyseenarelistedbyHicks:(1)∂xci=∂pi0(negativityoftheown-substitutioneffect);and(2)∂xci=∂pj¼∂xcj=∂pi(symmetryofcross-substitutioneffects).Butherefersexplicitlyonlytotwo“properties”inhiswrittensummaryofhisresults.4Toseethis,noticethatallsubstitutioneffects,sij,couldberecordedinannnmatrix.However,symmetryoftheeffects(sij¼sji)impliesthatonlythosetermsonandbelowtheprincipaldiagonalofthismatrixmaybedistinctlydifferentfromeachother.Thisamountstohalfthetermsinthematrix(n2=2)plustheremaininghalfofthetermsonthemaindiagonalofthematrix(n=2).188Part2ChoiceandDemand
lumpthemintoasingle“compositecommodity,”y.Formally,ifweletp02,…,p0nrepresenttheinitialpricesofthesegoods,thenweassumethatthesepricescanonlyvarytogether.Theymightalldouble,oralldeclineby50percent,buttherelativepricesofx2,…,xnwouldnotchange.Nowwedefinethecompositecommodityytobetotalexpendituresonx2,…,xn,usingtheinitialpricesp02,…,p0n:y¼p02x2þp03x3þ…þp0nxn.(6.28)Thisperson’sinitialbudgetconstraintisgivenbyI¼p1x1þp02x2þ…þp0nxn¼p1x1þy.(6.29)Byassumption,allofthepricesp2,…,pnchangeinunison.Assumeallofthesepriceschangebyafactoroftðt>0Þ.NowthebudgetconstraintisI¼p1x1þtp02x2þ…þtp0nxn¼p1x1þty.(6.30)Consequently,thefactorofproportionality,t,playsthesameroleinthisperson’sbudgetconstraintasdidthepriceofyðpyÞinourearliertwo-goodanalysis.Changesinp1ortinducethesamekindsofsubstitutioneffectswehavebeenanalyzing.Solongasp2,…,pnmovetogether,wecanthereforeconfineourexaminationofdemandtochoicesbetweenbuyingx1orbuying“everythingelse.”5Simplifiedgraphsthatshowthesetwogoodsontheiraxescanthereforebedefendedrigorouslysolongastheconditionsofthis“compositecommoditytheorem”(thatallotherpricesmovetogether)aresatisfied.Notice,however,thatthetheoremmakesnopredictionsabouthowchoicesofx2,…,xnbehave;theyneednotmoveinunison.Thetheoremfocusesonlyontotalspendingonx2,…,xn,notonhowthatspendingisallocatedamongspecificitems(althoughthisallocationisassumedtobedoneinautility-maximizingway).GeneralizationsandlimitationsThecompositecommoditytheoremappliestoanygroupofcommoditieswhoserelativepricesallmovetogether.Itispossibletohavemorethanonesuchcommodityifthereareseveralgroupingsthatobeythetheorem(i.e.,expenditureson“food,”“clothing,”andsoforth).Hence,wehavedevelopedthefollowingdefinition.DEFINITIONCompositecommodity.Acompositecommodityisagroupofgoodsforwhichallpricesmovetogether.Thesegoodscanbetreatedasasingle“commodity”inthattheindividualbehavesasifheorshewerechoosingbetweenothergoodsandtotalspendingontheentirecompositegroup.Thisdefinitionandtherelatedtheoremareverypowerfulresults.Theyhelpsimplifymanyproblemsthatwouldotherwisebeintractable.Still,onemustberathercarefulinapplyingthetheoremtotherealworldbecauseitsconditionsarestringent.Findingasetofcom-moditieswhosepricesmovetogetherisrare.Slightdeparturesfromstrictproportionalitymaynegatethecompositecommoditytheoremifcross-substitutioneffectsarelarge.IntheExtensionstothischapter,welookatwaystosimplifysituationswherepricesmoveindependently.5Theideaofa“compositecommodity”wasalsointroducedbyJ.R.HicksinValueandCapital,2nded.(Oxford:OxfordUniversityPress,1946),pp.312–13.Proofofthetheoremreliesonthenotionthattoachievemaximumutility,theratioofthemarginalutilitiesforx2,…,xnmustremainunchangedwhenp2,…,pnallmovetogether.Hence,then-goodproblemcanbereducedtothetwo-dimensionalproblemofequatingtheratioofthemarginalutilityfromxtothatfromytothe“priceratio”p1=t.Chapter6DemandRelationshipsamongGoods189
EXAMPLE6.3HousingCostsasaCompositeCommoditySupposethatanindividualreceivesutilityfromthreegoods:food(x),housingservices(y)measuredinhundredsofsquarefeet,andhouseholdoperations(z)asmeasuredbyelec-tricityuse.Iftheindividual’sutilityisgivenbythethree-goodCESfunctionutility¼Uðx,y,zÞ¼1x1y1z,(6.31)thentheLagrangiantechniquecanbeusedtocalculateMarshalliandemandfunctionsforthesegoodsasx¼Ipxþffiffiffiffiffiffiffiffiffipxpypþffiffiffiffiffiffiffiffiffipxpzp,y¼Ipyþffiffiffiffiffiffiffiffiffipypxpþffiffiffiffiffiffiffiffiffipypzp,z¼Ipzþffiffiffiffiffiffiffiffiffipzpxpþffiffiffiffiffiffiffiffiffipzpyp.(6.32)IfinitiallyI¼100,px¼1,py¼4,andpz¼1,thenthedemandfunctionspredictx¼25,y¼12:5,z¼25:(6.33)Hence,25isspentonfoodandatotalof75isspentonhousing-relatedneeds.Ifweassumethathousingserviceprices(py)andhouseholdoperationprices(pz)alwaysmovetogether,thenwecanusetheirinitialpricestodefinethe“compositecommodity”housing(h)ash¼4yþ1z.(6.34)Here,wealso(arbitrarily)definetheinitialpriceofhousing(ph)tobe1.Theinitialquantityofhousingissimplytotaldollarsspentonh:h¼4ð12:5Þþ1ð25Þ¼75.(6.35)Furthermore,becausepyandpzalwaysmovetogether,phwillalwaysberelatedtothesepricesbyph¼pz¼0:25py.(6.36)Usingthisinformation,wecanrecalculatethedemandfunctionforxasafunctionofI,px,andph:x¼Ipxþffiffiffiffiffiffiffiffiffiffiffiffi4pxphpþffiffiffiffiffiffiffiffiffipxphp¼Ipyþ3ffiffiffiffiffiffiffiffiffipxphp.(6.37)Asbefore,initiallyI¼100,px¼1,andph¼1,sox¼25.Spendingonhousingcanbemosteasilycalculatedfromthebudgetconstraintash¼75,becausespendingonhousingrepresents“everything”otherthanfood.Anincreaseinhousingcosts.Ifthepricesofyandzweretoriseproportionallytopy¼16,pz¼4(withpxremainingat1),thenphwouldalsoriseto4.Equation6.37nowpredictsthatthedemandforxwouldfalltox¼1001þ3ffiffiffi4p¼1007(6.38)190Part2ChoiceandDemand
andthathousingpurchaseswouldbegivenbyphh¼1001007¼6007,(6.39)or,becauseph¼4,h¼1507.(6.40)NoticethatthisispreciselythelevelofhousingpurchasespredictedbytheoriginaldemandfunctionsforthreegoodsinEquation6.32.WithI¼100,px¼1,py¼16,andpz¼4,theseequationscanbesolvedasx¼1007,y¼10028,z¼10014,(6.41)andsothetotalamountofthecompositegood“housing”consumed(accordingtoEqua-tion6.34)isgivenbyh¼4yþ1z¼1507.(6.42)Hence,weobtainedthesameresponsestopricechangesregardlessofwhetherwechosetoexaminedemandsforthethreegoodsx,y,andzortolookonlyatchoicesbetweenxandthecompositegoodh.QUERY:HowdoweknowthatthedemandfunctionforxinEquation6.37continuestoensureutilitymaximization?WhyistheLagrangianconstrainedmaximizationproblemunchangedbymakingthesubstitutionsrepresentedbyEquation6.36?HOMEPRODUCTION,ATTRIBUTESOFGOODS,ANDIMPLICITPRICESSofarinthischapterwehavefocusedonwhateconomistscanlearnabouttherelationshipsamonggoodsbyobservingindividuals’changingconsumptionofthesegoodsinreactiontochangesinmarketprices.Insomewaysthisanalysisskirtsthecentralquestionofwhycoffeeandcreamgotogetherorwhyfishandchickenmaysubstituteforeachotherinaperson’sdiet.Todevelopadeeperunderstandingofsuchquestions,economistshavesoughttoexploreactivitieswithinindividuals’households.Thatis,theyhavedevisedmodelsofnonmarkettypesofactivitiessuchasparentalchildcare,mealpreparation,ordo-it-yourselfconstructiontounderstandhowsuchactivitiesultimatelyresultindemandsforgoodsinthemarket.Inthissectionwebrieflyreviewsomeofthesemodels.Ourprimarygoalistoillustratesomeoftheimplicationsofthisapproachforthetraditionaltheoryofchoice.HouseholdproductionmodelThestartingpointformostmodelsofhouseholdproductionistoassumethatindividualsdonotreceiveutilitydirectlyfromgoodstheypurchaseinthemarket(aswehavebeenassumingsofar).Instead,itisonlywhenmarketgoodsarecombinedwithtimeinputsbytheindividualthatutility-providingoutputsareproduced.Inthisview,then,rawbeefanduncookedChapter6DemandRelationshipsamongGoods191
potatoesyieldnoutilityuntiltheyarecookedtogethertoproducestew.Similarly,marketpurchasesofbeefandpotatoescanbeunderstoodonlybyexaminingtheindividual’spreferencesforstewandtheunderlyingtechnologythroughwhichitisproduced.Informalterms,assumeasbeforethattherearethreegoodsthatapersonmightpurchaseinthemarket:x,y,andz.Purchasingthesegoodsprovidesnodirectutility,butthegoodscanbecombinedbytheindividualtoproduceeitheroftwohome-producedgoods:a1ora2.Thetechnologyofthishouseholdproductioncanberepresentedbytheproductionfunc-tionsf1andf2(seeChapter9foramorecompletediscussionoftheproductionfunctionconcept).Therefore,a1¼f1ðx,y,zÞ,a2¼f2ðx,y,zÞ,(6.43)andutility¼Uða1,a2Þ.(6.44)Theindividual’sgoalistochoosex,y,zsoastomaximizeutilitysubjecttotheproductionconstraintsandtoafinancialbudgetconstraint:6pxxþpyyþpzz¼I.(6.45)Althoughwewillnotexamineindetailtheresultsthatcanbederivedfromthisgeneralmodel,twoinsightsthatcanbedrawnfromitmightbementioned.First,themodelmayhelpclarifythenatureofmarketrelationshipsamonggoods.Becausetheproductionfunc-tionsinEquations6.43areinprinciplemeasurableusingdetaileddataonhouseholdoperations,householdscanbetreatedas“multi-product”firmsandstudiedusingmanyofthetechniqueseconomistsusetostudyproduction.Asecondinsightprovidedbythehouseholdproductionapproachisthenotionofthe“implicit”or“shadow”pricesassociatedwiththehome-producedgoodsa1anda2.Becauseconsumingmorea1,say,requirestheuseofmoreofthe“ingredients”x,y,andz,thisactivityobviouslyhasanopportunitycostintermsofthequantityofa2thatcanbeproduced.Toproducemorebread,say,apersonmustnotonlydivertsomeflour,milk,andeggsfromusingthemtomakecupcakesbutmayalsohavetoaltertherelativequantitiesofthesegoodspurchasedbecauseheorsheisboundbyanoverallbudgetconstraint.Hence,breadwillhaveanimplicitpriceintermsofthenumberofcupcakesthatmustbeforgoneinordertobeabletoconsumeonemoreloaf.Thatimplicitpricewillreflectnotonlythemarketpricesofbreadingredientsbutalsotheavailablehouseholdproductiontechnologyand,inmorecomplexmodels,therelativetimeinputsrequiredtoproducethetwogoods.Asastartingpoint,however,thenotionofimplicitpricescanbebestillustratedwithaverysimplemodel.ThelinearattributesmodelAparticularlysimpleformofthehouseholdproductionmodelwasfirstdevelopedbyK.J.Lancastertoexaminetheunderlying“attributes”ofgoods.7Inthismodel,itistheattributesofgoodsthatprovideutilitytoindividuals,andeachspecificgoodcontainsafixedsetofattributes.If,forexample,wefocusonlyonthecalories(a1)andvitamins(a2)thatvariousfoodsprovide,Lancaster’smodelassumesthatutilityisafunctionoftheseattributesandthatindividualspurchasevariousfoodsonlyforthepurposeofobtainingthecaloriesandvitaminstheyoffer.Inmathematicalterms,themodelassumesthatthe“production”6Oftenhouseholdproductiontheoryalsofocusesontheindividual’sallocationoftimetoproducinga1anda2ortoworkinginthemarket.InChapter16welookatafewsimplemodelsofthistype.7SeeK.J.Lancaster,“ANewApproachtoConsumerTheory,”JournalofPoliticalEconomy74(April1966):132–57.192Part2ChoiceandDemand
equationshavethesimpleforma1¼a1xxþa1yyþa1zz,a2¼a2xxþa2yyþa2zz,(6.46)wherea1xrepresentsthenumberofcaloriesperunitoffoodx,a2xrepresentsthenumberofvitaminsperunitoffoodx,andsoforth.Inthisformofthemodel,then,thereisnoactual“production”inthehome.Rather,thedecisionproblemishowtochooseadietthatprovidestheoptimalmixofcaloriesandvitaminsgiventheavailablefoodbudget.IllustratingthebudgetconstraintsTobeginourexaminationofthetheoryofchoiceundertheattributesmodel,wefirstillustratethebudgetconstraint.InFigure6.2,theray0xrecordsthevariouscombinationsofa1anda2availablefromsuccessivelylargeramountsofgoodx.Becauseofthelinearproductiontechnologyassumedintheattributesmodel,thesecombinationsofa1anda2liealongsuchastraightline,thoughinmorecomplexmodelsofhomeproductionthatmightnotbethecase.Similarly,raysof0yand0zshowthequantitiesoftheattributesa1anda2providedbyvariousamountsofgoodsyandzthatmightbepurchased.Ifthispersonspendsallofhisorherincomeongoodx,thenthebudgetconstraint(Equation6.45)allowsthepurchaseofx¼Ipx,(6.47)andthatwillyielda1¼a1xx¼a1xIpx,a2¼a2xx¼a2xIpx.(6.48)Thispointisrecordedaspointxonthe0xrayinFigure6.2.Similarly,thepointsyandzrepresentthecombinationsofa1anda2thatwouldbeobtainedifallincomewerespentongoodyorgoodz,respectively.Bundlesofa1anda2thatareobtainablebypurchasingbothxandy(withafixedbudget)arerepresentedbythelinejoiningxandyinFigure6.2.8Similarly,thelinexzrepresentsthecombinationsofa1anda2availablefromxandz,andthelineyzshowscombinationsavailablefrommixingyandz.Allpossiblecombinationsfrommixingthethreemarketgoodsarerepresentedbytheshadedtriangularareaxyz.CornersolutionsOnefactisimmediatelyapparentfromFigure6.2:Autility-maximizingindividualwouldneverconsumepositivequantitiesofallthreeofthesegoods.Onlythenortheastperimeterofthexyztrianglerepresentsthemaximalamountsofa1anda2availabletothispersongivenhisorherincomeandthepricesofthemarketgoods.Individualswithapreferencetowarda1willhaveindifferencecurvessimilartoU0andwillmaximizeutilitybychoosingapointsuchasE.Thecombinationofa1anda2specifiedbythatpointcanbeobtainedby8Mathematically,supposeafractionαofthebudgetisspentonxand(1α)ony;thena1¼αa1xxþð1αÞa1yy,a2¼αa2xxþð1αÞa2yy.Thelinexyistracedoutbyallowingαtovarybetween0and1.Thelinesxzandyzaretracedoutinasimilarway,asisthetriangularareaxyz.Chapter6DemandRelationshipsamongGoods193
consumingonlygoodsyandz.Similarly,apersonwithpreferencesrepresentedbytheindifferencecurveU00willchoosepointE0andconsumeonlygoodsxandy.Theattributesmodelthereforepredictsthatcornersolutionsatwhichindividualsconsumezeroamountsofsomecommoditieswillberelativelycommon,especiallyincaseswhereindividualsattachvaluetofewerattributes(here,two)thantherearemarketgoodstochoosefrom(three).Ifincome,prices,orpreferenceschange,thenconsumptionpatternsmayalsochangeabruptly.Goodsthatwerepreviouslyconsumedmayceasetobeboughtandgoodspreviouslyne-glectedmayexperienceasignificantincreaseinpurchases.Thisisadirectresultofthelinearassumptionsinherentintheproductionfunctionsassumedhere.Inhouseholdproductionmodelswithgreatersubstitutabilityassumptions,suchdiscontinuousreactionsarelesslikely.FIGURE6.2UtilityMaximizationintheAttributesModelThepointsx,y,andzshowtheamountsofattributesa1anda2thatcanbepurchasedbybuyingonlyx,y,orz,respectively.Theshadedareashowsallcombinationsthatcanbeboughtwithmixedbundles.SomeindividualsmaymaximizeutilityatE,othersatE0.a*2a2a1a*10U′0U0x*y*z*E′zEyxSUMMARYInthischapter,weusedtheutility-maximizingmodelofchoicetoexaminerelationshipsamongconsumergoods.Althoughtheserelationshipsmaybecomplex,theanalysispresentedhereprovidedanumberofwaysofcategorizingandsimplifyingthem.•Whenthereareonlytwogoods,theincomeandsubsti-tutioneffectsfromthechangeinthepriceofonegood(say,py)onthedemandforanothergood(x)usuallyworkinoppositedirections.Thesignof∂x=∂pyisthere-foreambiguous:itssubstitutioneffectispositivebutitsincomeeffectisnegative.•Incasesofmorethantwogoods,demandrelationshipscanbespecifiedintwoways.Twogoods(xiandxj)are“grosssubstitutes”if∂xi=∂pj>0and“grosscomple-ments”if∂xi=∂pj<0.Unfortunately,becausethesepriceeffectsincludeincomeeffects,theyneednotbesym-metric.Thatis,∂xi=∂pjdoesnotnecessarilyequal∂xj=∂pi.•Focusingonlyonthesubstitutioneffectsfrompricechangeseliminatesthisambiguitybecausesubstitutioneffectsaresymmetric;thatis,∂xci=∂pj¼∂xcj=∂pi.Nowtwogoodsaredefinedasnet(orHicksian)substitutesif∂xci=∂pj>0andnetcomplementsif∂xci=∂pj<0.Hicks’194Part2ChoiceandDemand
PROBLEMS6.1Heidireceivesutilityfromtwogoods,goat’smilk(m)andstrudel(s),accordingtotheutilityfunctionUðm,sÞ¼m⋅s.a.Showthatincreasesinthepriceofgoat’smilkwillnotaffectthequantityofstrudelHeidibuys;thatis,showthat∂s=∂pm¼0.b.Showalsothat∂m=∂ps¼0.c.UsetheSlutskyequationandthesymmetryofnetsubstitutioneffectstoprovethattheincomeeffectsinvolvedwiththederivativesinparts(a)and(b)areidentical.d.Provepart(c)explicitlyusingtheMarshalliandemandfunctionsformands.6.2HardTimesBurtbuysonlyrotgutwhiskeyandjellydonutstosustainhim.ForBurt,rotgutwhiskeyisaninferiorgoodthatexhibitsGiffen’sparadox,althoughrotgutwhiskeyandjellydonutsareHicksiansubstitutesinthecustomarysense.Developanintuitiveexplanationtosuggestwhyariseinthepriceofrotgutmustcausefewerjellydonutstobebought.Thatis,thegoodsmustalsobegrosscomplements.6.3Donald,afrugalgraduatestudent,consumesonlycoffee(c)andbutteredtoast(bt).Hebuystheseitemsattheuniversitycafeteriaandalwaysusestwopatsofbutterforeachpieceoftoast.Donaldspendsexactlyhalfofhismeagerstipendoncoffeeandtheotherhalfonbutteredtoast.a.Inthisproblem,butteredtoastcanbetreatedasacompositecommodity.Whatisitspriceintermsofthepricesofbutter(pb)andtoast(pt)?b.Explainwhy∂c=∂pbt¼0.c.Isitalsotrueherethat∂c=∂pband∂c=∂ptareequalto0?6.4Ms.SarahTravelerdoesnotownacarandtravelsonlybybus,train,orplane.Herutilityfunctionisgivenbyutility¼b⋅t⋅p,whereeachletterstandsformilestraveledbyaspecificmode.Supposethattheratioofthepriceoftraintraveltothatofbustravel(pt=pb)neverchanges.a.Howmightonedefineacompositecommodityforgroundtransportation?b.PhraseSarah’soptimizationproblemasoneofchoosingbetweenground(g)andair(p)transportation.c.WhatareSarah’sdemandfunctionsforgandp?d.OnceSarahdecideshowmuchtospendong,howwillsheallocatethoseexpendituresbetweenbandt?“secondlawofdemand”showsthatnetsubstitutesaremoreprevalent.•Ifagroupofgoodshaspricesthatalwaysmoveinunison,thenexpendituresonthesegoodscanbetreatedasa“compositecommodity”whose“price”isgivenbythesizeoftheproportionalchangeinthecompositegoods’prices.•Analternativewaytodevelopthetheoryofchoiceamongmarketgoodsistofocusonthewaysinwhichmarketgoodsareusedinhouseholdproductiontoyieldutility-providingattributes.Thismayprovideadditionalinsightsintorelationshipsamonggoods.Chapter6DemandRelationshipsamongGoods195
6.5Supposethatanindividualconsumesthreegoods,x1,x2,andx3,andthatx2andx3aresimilarcommodities(i.e.,cheapandexpensiverestaurantmeals)withp2¼kp3,wherek<1—thatis,thegoods’priceshaveaconstantrelationshiptooneanother.a.Showthatx2andx3canbetreatedasacompositecommodity.b.Supposebothx2andx3aresubjecttoatransactioncostoftperunit(forsomeexamples,seeProblem6.6).Howwillthistransactioncostaffectthepriceofx2relativetothatofx3?Howwillthiseffectvarywiththevalueoft?c.Canyoupredicthowanincome-compensatedincreaseintwillaffectexpendituresonthecompositecommodityx2andx3?Doesthecompositecommoditytheoremstrictlyapplytothiscase?d.Howwillanincome-compensatedincreaseintaffecthowtotalspendingonthecompositecommodityisallocatedbetweenx2andx3?6.6ApplytheresultsofProblem6.5toexplainthefollowingobservations:a.Itisdifficulttofindhigh-qualityapplestobuyinWashingtonStateorgoodfreshorangesinFlorida.b.Peoplewithsignificantbaby-sittingexpensesaremorelikelytohavemealsoutatexpensive(ratherthancheap)restaurantsthanarethosewithoutsuchexpenses.c.IndividualswithahighvalueoftimearemorelikelytoflytheConcordethanthosewithalowervalueoftime.d.Individualsaremorelikelytosearchforbargainsforexpensiveitemsthanforcheapones.Note:Observations(b)and(d)formthebasesforperhapstheonlytwomurdermysteriesinwhichaneconomistsolvesthecrime;seeMarshallJevons,MurderattheMarginandTheFatalEquilibrium.6.7Ingeneral,uncompensatedcross-priceeffectsarenotequal.Thatis,∂xi∂pj6¼∂xj∂pi.UsetheSlutskyequationtoshowthattheseeffectsareequaliftheindividualspendsaconstantfractionofincomeoneachgoodregardlessofrelativeprices.(ThisisageneralizationofProblem6.1.)6.8Example6.3computesthedemandfunctionsimpliedbythethree-goodCESutilityfunctionUðx,y,zÞ¼−1x−1y−1z.a.UsethedemandfunctionforxinEquation6.32todeterminewhetherxandyorxandzaregrosssubstitutesorgrosscomplements.b.Howwouldyoudeterminewhetherxandyorxandzarenetsubstitutesornetcomplements?AnalyticalProblems6.9ConsumersurpluswithmanygoodsInChapter5,weshowedhowthewelfarecostsofchangesinasinglepricecanbemeasuredusingexpenditurefunctionsandcompensateddemandcurves.Thisproblemasksyoutogeneralizethistopricechangesintwo(ormany)goods.196Part2ChoiceandDemand
a.Supposethatanindividualconsumesngoodsandthatthepricesoftwoofthosegoods(say,p1andp2)rise.Howwouldyouusetheexpenditurefunctiontomeasurethecompensatingvariation(CV)forthispersonofsuchapricerise?b.Awaytoshowthesewelfarecostsgraphicallywouldbetousethecompensateddemandcurvesforgoodsx1andx2byassumingthatonepricerosebeforetheother.Illustratethisapproach.c.Inyouranswertopart(b),woulditmatterinwhichorderyouconsideredthepricechanges?Explain.d.Ingeneral,wouldyouthinkthattheCVforapriceriseofthesetwogoodswouldbegreaterifthegoodswerenetsubstitutesornetcomplements?Orwouldtherelationshipbetweenthegoodshavenobearingonthewelfarecosts?6.10SeparableutilityAutilityfunctioniscalledseparableifitcanbewrittenasUðx,yÞ¼U1ðxÞþU2ðyÞ,whereU0i>0,U00i<0,andU1,U2neednotbethesamefunction.a.Whatdoesseparabilityassumeaboutthecross-partialderivativeUxy?Giveanintuitivediscus-sionofwhatwordthisconditionmeansandinwhatsituationsitmightbeplausible.b.Showthatifutilityisseparablethenneithergoodcanbeinferior.c.Doestheassumptionofseparabilityallowyoutoconcludedefinitivelywhetherxandyaregrosssubstitutesorgrosscomplements?Explain.d.UsetheCobb-Douglasutilityfunctiontoshowthatseparabilityisnotinvariantwithrespecttomonotonictransformations.Note:SeparablefunctionsareexaminedinmoredetailintheExten-sionstothischapter.6.11GraphingcomplementsGraphingcomplementsiscomplicatedbecauseacomplementaryrelationshipbetweengoods(undertheHicksdefinition)cannotoccurwithonlytwogoods.Rather,complementaritynecessarilyinvolvesthedemandrelationshipsamongthree(ormore)goods.Inhisreviewofcomplementarity,Samuelsonprovidesawayofillustratingtheconceptwithatwo-dimensionalindifferencecurvediagram(seetheSuggestedReadings).Toexaminethisconstruction,assumetherearethreegoodsthataconsumermightchoose.Thequantitiesofthesearedenotedbyx1,x2,x3.Nowproceedasfollows.a.Drawanindifferencecurveforx2andx3,holdingthequantityofx1constantatx01.Thisindifferencecurvewillhavethecustomaryconvexshape.b.Nowdrawasecond(higher)indifferencecurveforx2,x3,holdingx1constantatx01h.Forthisnewindifferencecurve,showtheamountofextrax2thatwouldcompensatethispersonforthelossofx1;callthisamountj.Similarly,showthatamountofextrax3thatwouldcompensateforthelossofx1andcallthisamountk.c.Supposenowthatanindividualisgivenbothamountsjandk,therebypermittinghimorhertomovetoanevenhigherx2=x3indifferencecurve.Showthismoveonyourgraphanddrawthisnewindifferencecurve.d.Samuelsonnowsuggeststhefollowingdefinitions:•Ifthenewindifferencecurvecorrespondstotheindifferencecurvewhenx1¼x012h,goods2and3areindependent.•Ifthenewindifferencecurveprovidesmoreutilitythanwhenx1¼x012h,goods2and3arecomplements.•Ifthenewindifferencecurveprovideslessutilitythanwhenx1¼x012h,goods2and3aresubstitutes.Showthatthesegraphicaldefinitionsaresymmetric.Chapter6DemandRelationshipsamongGoods197
e.DiscusshowthesegraphicaldefinitionscorrespondtoHicks’moremathematicaldefinitionsgiveninthetext.f.Lookingatyourfinalgraph,doyouthinkthatthisapproachfullyexplainsthetypesofrelation-shipsthatmightexistbetweenx2andx3?6.12ShippingthegoodapplesoutDetailsoftheanalysissuggestedinProblems6.5and6.6wereoriginallyworkedoutbyBorcherdingandSilberberg(seetheSuggestedReadings)basedonasuppositionfirstproposedbyAlchianandAllen.Theseauthorslookathowatransactionchargeaffectstherelativedemandfortwocloselysubstitutableitems.Assumethatgoodsx2andx3areclosesubstitutesandaresubjecttoatransactionchargeoftperunit.Supposealsothatgood2isthemoreexpensiveofthetwogoods(i.e.,“goodapples”asopposedto“cookingapples”).Hencethetransactionchargelowerstherelativepriceofthemoreexpensivegood[thatis,ðp2þtÞ=ðp3þtÞfallsastincreases].Thiswillincreasetherelativedemandfortheexpensivegoodif∂ðxc2=xc3Þ=∂t>0(whereweusecompensateddemandfunctionsinordertoeliminatepeskyincomeeffects).BorcherdingandSilberbergshowthisresultwillprobablyholdusingthefollowingsteps.a.Usethederivativeofaquotientruletoexpand∂ðxc2=xc3Þ=∂t.b.Useyourresultfrompart(a)togetherwiththefactthat,inthisproblem,∂xci=∂t¼∂xci=∂p2þ∂xci=∂p3fori¼2,3,toshowthatthederivativeweseekcanbewrittenas∂ðxc2=xc3Þ∂t¼xc2xc3s22x2þs23x2s32x3s33x3,wheresij¼∂xci=∂pj.c.Rewritetheresultfrompart(b)intermsofcompensatedpriceelasticities:ecij¼∂xci∂pj⋅pjxci.d.UseHicks’thirdlaw(Equation6.26)toshowthattheterminbracketsinparts(b)and(c)cannowbewrittenas½ðe22e32Þð1=p21=p3Þþðe21e31Þ=p3.e.Developanintuitiveargumentaboutwhytheexpressioninpart(d)islikelytobepositiveundertheconditionsofthisproblem.Hints:Whyisthefirstproductinthebracketspositive?Whyisthesecondterminbracketslikelytobesmall?f.ReturntoProblem6.6andprovidemorecompleteexplanationsforthesevariousfindings.198Part2ChoiceandDemand
SUGGESTIONSFORFURTHERREADINGBorcherding,T.E.,andE.Silberberg.“ShippingtheGoodApplesOut—TheAlchian-AllenTheoremReconsidered,”JournalofPoliticalEconomy(February1978):131–38.Gooddiscussionoftherelationshipsamongthreegoodsindemandtheory.SeealsoProblems6.5and6.6.Hicks,J.R.ValueandCapital,2nded.Oxford:OxfordUniversityPress,1946.SeeChaps.I–IIIandrelatedappendices.Proofofthecompositecommoditytheorem.Alsohasoneofthefirsttreatmentsofnetsubstitutesandcomplements.Mas-Colell,A.,M.D.Whinston,andJ.R.Green.MicroeconomicTheory.NewYork:OxfordUniversityPress,1995.Explorestheconsequencesofthesymmetryofcompensatedcross-priceeffectsforvariousaspectsofdemandtheory.Rosen,S.“HedonicPricesandImplicitMarkets.”JournalofPoliticalEconomy(January/February1974):34–55.Nicegraphicalandmathematicaltreatmentoftheattributeap-proachtoconsumertheoryandoftheconceptof“markets”forattributes.Samuelson,P.A.“Complementarity—AnEssayonthe40thAnniversaryoftheHicks-AllenRevolutioninDemandTheory.”JournalofEconomicLiterature(December1977):1255–89.Reviewsanumberofdefinitionsofcomplementarityandshowstheconnectionsamongthem.Containsanintuitive,graphicaldiscussionandadetailedmathematicalappendix.Silberberg,E.,andW.Suen.TheStructureofEconomics:AMathematicalAnalysis,3rded.Boston:Irwin/McGraw-Hill,2001.Gooddiscussionofexpenditurefunctionsandtheuseofindirectutilityfunctionstoillustratethecompositecommoditytheoremandotherresults.Chapter6DemandRelationshipsamongGoods199
EXTENSIONSSimplifyingDemandandTwo-StageBudgetingInChapter6wesawthatthetheoryofutilitymaximi-zationinitsfullgeneralityimposesratherfewrestric-tionsonwhatmighthappen.Otherthanthefactthatnetcross-substitutioneffectsaresymmetric,practicallyanytypeofrelationshipamonggoodsisconsistentwiththeunderlyingtheory.Thissituationposesprob-lemsforeconomistswhowishtostudyconsumptionbehaviorintherealworld—theoryjustdoesnotpro-videverymuchguidancewhentherearemanythou-sandsofgoodspotentiallyavailableforstudy.Therearetwogeneralwaysinwhichsimplificationsaremade.ThefirstusesthecompositecommoditytheoremfromChapter6toaggregategoodsintocate-gorieswithinwhichrelativepricesmovetogether.Forsituationswhereeconomistsarespecificallyinterestedinchangesinrelativepriceswithinacategoryofspend-ing(suchaschangesintherelativepricesofvariousformsofenergy),thisprocesswillnotdo,however.Analternativeistoassumethatconsumersengageinatwo-stageprocessintheirconsumptiondecisions.Firsttheyallocateincometovariousbroadgroupingsofgoods(food,clothing,andsoforth)andthen,giventheseexpenditureconstraints,theymaximizeutilitywithineachofthesubcategoriesofgoodsusingonlyinformationaboutthosegoods’relativeprices.Inthatway,decisionscanbestudiedinasimplifiedsettingbylookingonlyatonecategoryatatime.Thisprocessiscalled“two-stage”budgeting.Intheseextensions,wefirstlookatthegeneraltheoryoftwo-stagebudgetingandthenturntoexaminesomeempiricalexamples.E6.1Theoryoftwo-stagebudgetingTheissuethatarisesintwo-stagebudgetingcanbestatedsuccinctly:Doesthereexistapartitionofgoodsintomnonoverlappinggroups(denotedbyr¼1,m)andaseparatebudget(lr)devotedtoeachcategorysuchthatthedemandfunctionsforthegoodswithinanyonecategorydependonlyonthepricesofgoodswithinthecategoryandonthecategory’sbudgetallo-cation?Thatis,canwepartitiongoodssothatdemandisgivenbyxiðp1,…,pn,IÞ¼xi2rðpi2r,IrÞ(i)forr¼1,m,?Thatitmightbepossibletodothisissuggestedbycomparingthefollowingtwo-stagemaximizationproblem,Vðp1,…,pn,I1,…,ImÞ¼maxx1,…,xnhUðx1,…,xnÞs:t:Xi2rpixiIr,r¼1,mi(ii)andmaxI1,…,ImVs.t.Xmr¼1Ir¼I,totheutility-maximizationproblemwehavebeenstudying,maxxiUðx1,…,xnÞs.t.Xni¼1pixiI.(iii)Withoutanyfurtherrestrictions,thesetwomaxi-mizationprocesseswillyieldthesameresult;thatis,EquationiiisjustamorecomplicatedwayofstatingEquationiii.So,somerestrictionshavetobeplacedontheutilityfunctiontoensurethatthedemandfunctionsthatresultfromsolvingthetwo-stageprocesswillbeoftheformspecifiedinEquationi.Intuitively,itseemsthatsuchacategorizationofgoodsshouldworkprovidingthatchangesinthepriceofagoodinonecategorydonotaffecttheallocationofspendingforgoodsinanycategoryotherthanitsown.InProblem6.9weshowedacasewherethisistrueforan“additivelyseparable”utilityfunction.Unfortunately,thisprovestobeaveryspecialcase.Themoregeneralmathematicalrestrictionsthatmustbeplacedontheutilityfunctiontojustifytwo-stagebudgetinghavebeenderived(seeBlackorby,Primont,andRussell,1978),butthesearenotespeciallyintuitive.Ofcourse,economistswhowishtostudydecentralizeddecisionsbyconsumers(or,perhapsmoreimportantly,byfirmsthatoperatemanydivisions)mustdosomethingtosimplifymatters.Nowwelookatafewappliedexamples.E6.2RelationtothecompositioncommoditytheoremUnfortunately,neitherofthetwoavailabletheoreticalapproachestodemandsimplificationiscompletelysat-isfying.Thecompositecommoditytheoremrequiresthattherelativepricesforgoodswithinonegroupremainconstantovertime,anassumptionthathasbeenrejectedduringmanydifferenthistoricalperiods.200Part2ChoiceandDemand
Ontheotherhand,thekindofseparabilityandtwo-stagebudgetingindicatedbytheutilityfunctioninEquationialsorequiresverystrongassumptionsabouthowchangesinpricesforagoodinonegroupaffectspendingongoodsinanyothergroup.Theseassumptionsappeartoberejectedbythedata(seeDiewertandWales,1995).Economistshavetriedtodeviseevenmoreelabo-rate,hybridmethodsofaggregationamonggoods.Forexample,Lewbel(1996)showshowthecompos-itecommoditytheoremmightbegeneralizedtocaseswherewithin-grouprelativepricesexhibitconsiderablevariability.HeusesthisgeneralizationforaggregatingU.S.consumerexpendituresintosixlargegroups(food,clothing,householdoperation,medicalcare,transportation,andrecreation).Usingtheseaggre-gates,heconcludesthathisprocedureismuchmoreaccuratethanassumingtwo-stagebudgetingamongtheseexpenditurecategories.E6.3HomotheticfunctionsandenergydemandOnewaytosimplifythestudyofdemandwhentherearemanycommoditiesistoassumethatutilityforcertainsubcategoriesofgoodsishomotheticandmaybeseparatedfromthedemandforothercom-modities.ThisprocedurewasfollowedbyJorgenson,Slesnick,andStoker(1997)intheirstudyofenergydemandbyU.S.consumers.Byassumingthatdemandfunctionsforspecifictypesofenergyareproportionaltototalspendingonenergy,theauthorswereabletoconcentratetheirempiricalstudyonthetopicthatisofmostinteresttothem:estimatingthepriceelasticitiesofdemandforvarioustypesofenergy.Theyconcludethatmosttypesofenergy(thatis,electricity,naturalgas,gasoline,andsoforth)havefairlyelasticdemandfunctions.Demandappearstobemostresponsivetopriceforelectricity.ReferencesBlackorby,Charles,DanielPrimont,andR.RobertRussell.Duality,SeparabilityandFunctionalStructure:TheoryandEconomicApplications.NewYork:NorthHolland,1978.Diewert,W.Erwin,andTerrenceJ.Wales.“FlexibleFunctionalFormsandTestsofHomogeneousSepara-bility.”JournalofEconometrics(June1995):259–302.Jorgenson,DaleW.,DanielT.Slesnick,andThomasM.Stoker.“Two-StageBudgetingandConsumerDemandforEnergy.”InDaleW.Jorgenson,Ed.,Welfare,vol.1:AggregateConsumerBehavior,pp.475–510.Cam-bridge,MA:MITPress,1997.Lewbel,Arthur.“AggregationwithoutSeparability:AStandardizedCompositeCommodityTheorem.”Amer-icanEconomicReview(June1996):524–43.Chapter6DemandRelationshipsamongGoods201
CHAPTER7UncertaintyandInformationInthischapterwewillexploresomeofthebasicelementsofthetheoryofindividualbehaviorinuncertainsituations.Ourgeneralgoalistoshowwhyindividualsdonotlikeriskandhowtheymayadoptstrategiestoreduceit.Moregenerally,thechapterisintendedtoprovideabriefintroductiontoissuesraisedbythepossibilitythatinformationmaybeimperfectwhenindividualsmakeutility-maximizingdecisions.Someofthethemesdevelopedherewillrecurthroughouttheremainderofthebook.MATHEMATICALSTATISTICSManyoftheformaltoolsformodelinguncertaintyineconomicsituationswereoriginallydevelopedinthefieldofmathematicalstatistics.SomeofthesetoolswerereviewedinChapter2andinthischapterwewillbemakingagreatdealofuseoftheconceptsintroducedthere.Specifically,fourstatisticalideaswillrecurthroughoutthischapter.•Randomvariable:Arandomvariableisavariablethatrecords,innumericalform,thepossibleoutcomesfromsomerandomevent.1•Probabilitydensityfunction(PDF):Afunctionthatshowstheprobabilitiesassoci-atedwiththepossibleoutcomesfromarandomvariable.•Expectedvalueofarandomvariable:Theoutcomeofarandomvariablethatwilloccur“onaverage.”TheexpectedvalueisdenotedbyEðxÞ.IfxisadiscreterandomvariablewithnoutcomesthenEðxÞ¼Pni¼1xi¼fðxiÞ,wherefðxÞisthePDFfortherandomvariablex.Ifxisacontinuousrandomvariable,thenEðxÞ¼∫þ∞∞xfðxÞdx.•Varianceandstandarddeviationofarandomvariable:Theseconceptsmea-surethedispersionofarandomvariableaboutitsexpectedvalue.Inthediscretecase,VarðxÞ¼σ2x¼Pni¼1½xiEðxÞ2fðxiÞ;inthecontinuouscase,VarðxÞ¼σ2x¼∫þ∞∞½xEðxÞ2fðxÞdx.Thestandarddeviationisthesquarerootofthevariance.Asweshallsee,alloftheseconceptswillcomeintoplaywhenwebeginlookingatthedecision-makingprocessofapersonfacedwithanumberofuncertainoutcomesthatcanbeconceptuallyrepresentedbyarandomvariable.1Whenitisnecessarytodifferentiatebetweenrandomvariablesandnonrandomvariables,wewillusethenotation∼xtodenotethefactthatthevariablexisrandominthatittakesonanumberofpotentialrandomlydeterminedoutcomes.Often,however,itwillnotbenecessarytomakethedistinctionbecauserandomnesswillbeclearfromthecontextoftheproblem.202
FAIRGAMESANDTHEEXPECTEDUTILITYHYPOTHESISA“fairgame”isarandomgamewithaspecifiedsetofprizesandassociatedprobabilitiesthathasanexpectedvalueofzero.Forexample,ifyouflipacoinwithafriendforadollar,theexpectedvalueofthisgameiszerobecauseEðxÞ¼0:5ðþ$1Þþ0:5ð$1Þ¼0,(7.1)wherewinsarerecordedwithaplussignandlosseswithaminussign.Similarly,agamethatpromisedtopayyou$10ifacoincameupheadsbutwouldcostyouonly$1ifitcameuptailswouldbe“unfair”becauseEðxÞ¼0:5ðþ$10Þþ0:5ð$1Þ¼$4:50.(7.2)Thisgamecaneasilybeconvertedintoafairgame,however,simplybychargingyouanentryfeeof$4.50fortherighttoplay.2Ithaslongbeenrecognizedthatmostpeoplewouldprefernottoplayfairgames.Althoughpeoplemaysometimeswillinglyflipacoinforafewdollars,theywouldgenerallybalkatplayingasimilargamewhoseoutcomewas+$1millionor$1million.OneofthefirstmathematicianstostudythereasonsforthisunwillingnesstoengageinfairbetswasDanielBernoulliintheeighteenthcentury.3HisexaminationofthefamousSt.Petersburgparadoxprovidedthestartingpointforvirtuallyallstudiesofthebehaviorofindividualsinuncertainsituations.St.PetersburgparadoxIntheSt.Petersburgparadox,thefollowinggameisproposed:Acoinisflippeduntilaheadappears.Ifaheadfirstappearsonthenthflip,theplayerispaid$2n.Thisgamehasaninfinitenumberofoutcomes(acoinmightbeflippedfromnowuntildoomsdayandnevercomeupahead,althoughthelikelihoodofthisissmall),butthefirstfewcaneasilybewrittendown.Ifxirepresentstheprizeawardedwhenthefirstheadappearsontheithtrial,thenx1¼$2,×2¼$4,×3¼$8,…,xn¼$2n.(7.3)Theprobabilityofgettingaheadforthefirsttimeontheithtrialis12i;itistheprobabilityofgetting(i1)tailsandthenahead.HencetheprobabilitiesoftheprizesgiveninEquation7.3areπ1¼12,π2¼14,π3¼18,…,πn¼12n.(7.4)TheexpectedvalueoftheSt.Petersburgparadoxgameisthereforeinfinite:EðxÞ¼X∞i¼1πixi¼X∞i¼12ið1=2iÞ¼1þ1þ1þ…þ1þ…¼∞.(7.5)Someintrospection,however,shouldconvinceanyonethatnoplayerwouldpayverymuch(muchlessthaninfinity)toplaythisgame.IfIcharged$1billiontoplaythegame,Iwouldsurelyhavenotakers,despitethefactthat$1billionisstillconsiderablylessthantheexpectedvalueofthegame.This,then,istheparadox:Bernoulli’sgameisinsomesensenotworthits(infinite)expecteddollarvalue.2Thegamesdiscussedhereareassumedtoyieldnoutilityintheirplayotherthantheprizes;hence,theobservationthatmanyindividualsgambleat“unfair”oddsisnotnecessarilyarefutationofthisstatement.Rather,suchindividualscanreasonablybeassumedtobederivingsomeutilityfromthecircumstancesassociatedwiththeplayofthegame.Itisthereforepossibletodifferentiatetheconsumptionaspectofgamblingfromthepureriskaspect.3TheoriginalBernoullipaperhasbeenreprintedasD.Bernoulli,“ExpositionofaNewTheoryontheMeasurementofRisk,”Econometrica22(January1954):23–36.Chapter7UncertaintyandInformation203
ExpectedutilityBernoulli’ssolutiontothisparadoxwastoarguethatindividualsdonotcaredirectlyaboutthedollarprizesofagame;rather,theyrespondtotheutilitythesedollarsprovide.Ifweassumethatthemarginalutilityofwealthdeclinesaswealthincreases,theSt.Petersburggamemayconvergetoafiniteexpectedutilityvaluethatplayerswouldbewillingtopayfortherighttoplay.Bernoullitermedthisexpectedutilityvaluethemoralvalueofthegamebecauseitrepresentshowmuchthegameisworthtotheindividual.Becauseutilitymayriselessrapidlythanthedollarvalueoftheprizes,itispossiblethatagame’smoralvaluewillfallshortofitsmonetaryexpectedvalue.Example7.1looksatsomeissuesrelatedtoBernoulli’ssolution.EXAMPLE7.1Bernoulli’sSolutiontotheParadoxandItsShortcomingsSuppose,asdidBernoulli,thattheutilityofeachprizeintheSt.PetersburgparadoxisgivenbyUðxiÞ¼lnðxiÞ.(7.6)Thislogarithmicutilityfunctionexhibitsdiminishingmarginalutility(thatis,U0>0butU00<0),andtheexpectedutilityvalueofthisgameconvergestoafinitenumber:expectedutility¼X∞i¼1πiUðxÞi¼X∞i¼112ilnð2iÞ.(7.7)Somemanipulationofthisexpressionyields4theresultthattheexpectedutilityvalueofthisgameis1.39.Anindividualwiththistypeofutilityfunctionmightthereforebewillingtoinvestresourcesthatotherwiseyieldupto1.39unitsofutility(acertainwealthofabout$4providesthisutility)inpurchasingtherighttoplaythisgame.AssumingthattheverylargeprizespromisedbytheSt.Petersburgparadoxencounterdiminishingmarginalutilitythere-forepermittedBernoullitoofferasolutiontotheparadox.Unboundedutility.Bernoulli’ssolutiontotheSt.Petersburgparadox,unfortunately,doesnotcompletelysolvetheproblem.Solongasthereisnoupperboundtotheutilityfunction,theparadoxcanberegeneratedbyredefiningthegame’sprizes.Forexample,withthelogarithmicutilityfunction,prizescanbesetasxi¼e2i,inwhichcaseUðxiÞ¼ln½e2i¼2i(7.8)andtheexpectedutilityvalueofthegamewouldagainbeinfinite.Ofcourse,theprizesinthisredefinedgameareverylarge.Forexample,ifaheadfirstappearsonthefifthflip,apersonwouldwine25¼e32¼$7:9⋅1013,thoughtheprobabilityofwinningthiswouldbeonly1=25¼0:031.Theideathatpeoplewouldpayagreatdeal(say,billionsofdollars)toplaygameswithsmallprobabilitiesofsuchlargeprizesseems,tomanyobservers,tobeunlikely.Hence,inmanyrespectstheSt.Petersburggameremainsaparadox.4Proof:expectedutility¼X∞i¼1i2i⋅ln2¼ln2X∞i¼1i2i:Butthevalueofthisfinalinfiniteseriescanbeshowntobe2.0.Hence,expectedutility¼2ln2¼1:39.204Part2ChoiceandDemand
QUERY:HerearetwoalternativesolutionstotheSt.Petersburgparadox.Foreach,calculatetheexpectedvalueoftheoriginalgame.1.Supposeindividualsassumethatanyprobabilitylessthan0.01isinfactzero.2.SupposethattheutilityfromtheSt.PetersburgprizesisgivenbyUðxiÞ¼xiifxi1,000,000,1,000,000ifxi>1,000,000.THEVONNEUMANN–MORGENSTERNTHEOREMIntheirbookTheTheoryofGamesandEconomicBehavior,JohnvonNeumannandOscarMorgensterndevelopedmathematicalmodelsforexaminingtheeconomicbehaviorofin-dividualsunderconditionsofuncertainty.5Tounderstandtheseinteractions,itwasnecessaryfirsttoinvestigatethemotivesoftheparticipantsinsuch“games.”Becausethehypothesisthatindividualsmakechoicesinuncertainsituationsbasedonexpectedutilityseemedintuitivelyreasonable,theauthorssetouttoshowthatthishypothesiscouldbederivedfrommorebasicaxiomsof“rational”behavior.Theaxiomsrepresentanattemptbytheauthorstogeneralizethefoundationsofthetheoryofindividualchoicetocoveruncertainsituations.Althoughmostoftheseaxiomsseememinentlyreasonableatfirstglance,manyimportantquestionsabouttheirtenabilityhavebeenraised.Wewillnotpursuethesequestionshere,however.6ThevonNeumann–MorgensternutilityindexTobegin,supposethattherearenpossibleprizesthatanindividualmightwinbyparticipat-inginalottery.Lettheseprizesbedenotedbyx1,x2,…,xnandassumethatthesehavebeenarrangedinorderofascendingdesirability.Therefore,x1istheleastpreferredprizefortheindividualandxnisthemostpreferredprize.Nowassignarbitraryutilitynumberstothesetwoextremeprizes.Forexample,itisconvenienttoassignUðx1Þ¼0,UðxnÞ¼1,(7.9)butanyotherpairofnumberswoulddoequallywell.7Usingthesetwovaluesofutility,thepointofthevonNeumann–Morgensterntheoremistoshowthatareasonablewayexiststoassignspecificutilitynumberstotheotherprizesavailable.Supposethatwechooseanyotherprize,say,xi.Considerthefollowingexperiment.Asktheindividualtostatetheprobability,say,πi,atwhichheorshewouldbeindifferentbetweenxiwithcertainty,andagambleofferingprizesofxnwithprobabilityπiandx1withprobabilityð1πiÞ.Itseemsreasonable(althoughthisisthemostproblematicassumptioninthevonNeumann–Morgensternapproach)thatsuchaprobabilitywillexist:Theindividualwillalwaysbeindifferentbetweenagambleandasurething,providedthatahighenoughprobabilityofwinningthebestprizeisoffered.Italsoseemslikelythatπiwillbehigherthemoredesirablexiis;thebetterxiis,the5J.vonNeumannandO.Morgenstern,TheTheoryofGamesandEconomicBehavior(Princeton,NJ:PrincetonUniversityPress,1944).Theaxiomsofrationalityinuncertainsituationsarediscussedinthebook’sappendix.6ForadiscussionofsomeoftheissuesraisedinthedebateoverthevonNeumann–Morgensternaxioms,especiallytheassumptionofindependence,seeC.Gollier,TheEconomicsofRiskandTime(Cambridge,MA:MITPress,2001),chap.1.7Technically,avonNeumann–Morgensternutilityindexisuniqueonlyuptoachoiceofscaleandorigin—thatis,onlyuptoa“lineartransformation.”Thisrequirementismorestringentthantherequirementthatautilityfunctionbeuniqueuptoamonotonictransformation.Chapter7UncertaintyandInformation205
betterthechanceofwinningxnmustbetogettheindividualtogamble.Theprobabilityπithereforemeasureshowdesirabletheprizexiis.Infact,thevonNeumann–Morgensterntechniqueistodefinetheutilityofxiastheexpectedutilityofthegamblethattheindividualconsidersequallydesirabletoxi:UðxiÞ¼πi⋅UðxnÞþð1πiÞ⋅Uðx1Þ.(7.10)BecauseofourchoiceofscaleinEquation7.9,wehaveUðxiÞ¼πi⋅1þð1πiÞ⋅0¼πi.(7.11)Byjudiciouslychoosingtheutilitynumberstobeassignedtothebestandworstprizes,wehavebeenabletodeviseascaleunderwhichtheutilitynumberattachedtoanyotherprizeissimplytheprobabilityofwinningthetopprizeinagambletheindividualregardsasequivalenttotheprizeinquestion.Thischoiceofutilitynumbersisarbitrary.Anyothertwonumberscouldhavebeenusedtoconstructthisutilityscale,butourinitialchoice(Equation7.9)isaparticularlyconvenientone.ExpectedutilitymaximizationInlinewiththechoiceofscaleandoriginrepresentedbyEquation7.9,supposethatprobabilityπihasbeenassignedtorepresenttheutilityofeveryprizexi.Noticeinparticularthatπ1¼0,πn¼1,andthattheotherutilityvaluesrangebetweentheseextremes.Usingtheseutilitynumbers,wecanshowthata“rational”individualwillchooseamonggamblesbasedontheirexpected“utilities”(thatis,basedontheexpectedvalueofthesevonNeumann–Morgensternutilityindexnumbers).Asanexample,considertwogambles.Onegambleoffersx2,withprobabilityq,andx3,withprobability(1q).Theotheroffersx5,withprobabilityt,andx6,withprobability(1t).Wewanttoshowthatthispersonwillchoosegamble1ifandonlyiftheexpectedutilityofgamble1exceedsthatofgamble2.Nowforthegambles:expectedutilityð1Þ¼q⋅Uðx2Þþð1qÞ⋅Uðx3Þ,expectedutilityð2Þ¼t⋅Uðx5Þþð1tÞ⋅Uðx6Þ.(7.12)Substitutingtheutilityindexnumbers(thatis,π2isthe“utility”ofx2,andsoforth)givesexpectedutilityð1Þ¼q⋅π2þð1qÞ⋅π3,expectedutilityð2Þ¼t⋅π5þð1tÞ⋅π6.(7.13)Wewishtoshowthattheindividualwillprefergamble1togamble2ifandonlyifq⋅π2þð1qÞ⋅π3>t⋅π5þð1tÞ⋅π6.(7.14)Toshowthis,recallthedefinitionsoftheutilityindex.Theindividualisindifferentbetweenx2andagamblepromisingx1withprobability(1π2)andxnwithprobabilityπ2.Wecanusethisfacttosubstitutegamblesinvolvingonlyx1andxnforallutilitiesinEquation7.13(eventhoughtheindividualisindifferentbetweenthese,theassumptionthatthissubstitutioncanbemadeimplicitlyassumesthatpeoplecanseethroughcomplexlotterycombinations).Afterabitofmessyalgebra,wecanconcludethatgamble1isequivalenttoagamblepromisingxnwithprobabilityqπ2þð1qÞπ3,andgamble2isequivalenttoagamblepromisingxnwithprobabilitytπ5þð1tÞπ6.Theindividualwillpresumablypreferthegamblewiththehigherprobabilityofwinningthebestprize.Consequently,heorshewillchoosegamble1ifandonlyifqπ2þð1qÞπ3>tπ5þð1tÞπ6.(7.15)Butthisispreciselywhatwewantedtoshow.Consequently,wehaveprovedthatanindivid-ualwillchoosethegamblethatprovidesthehighestlevelofexpected(vonNeumann–Morgenstern)utility.Wenowmakeconsiderableuseofthisresult,whichcanbesummarizedasfollows.206Part2ChoiceandDemand
OPTIMIZATIONPRINCIPLEExpectedutilitymaximization.IfindividualsobeythevonNeumann–Morgensternaxiomsofbehaviorinuncertainsituations,theywillactasiftheychoosetheoptionthatmaximizestheexpectedvalueoftheirvonNeumann–Morgensternutilityindex.RISKAVERSIONTwolotteriesmayhavethesameexpectedmonetaryvaluebutmaydifferintheirriskiness.Forexample,flippingacoinfor$1andflippingacoinfor$1,000arebothfairgames,andbothhavethesameexpectedvalue(0).However,thelatterisinsomesensemore“risky”thantheformer,andfewerpeoplewouldparticipateinthegamewheretheprizewaswinningorlosing$1,000.Thepurposeofthissectionistodiscussthemeaningofthetermriskyandexplainthewidespreadaversiontorisk.Thetermriskreferstothevariabilityoftheoutcomesofsomeuncertainactivity.8Ifvariabilityislow,theactivitymaybeapproximatelyasurething.Withnomoreprecisenotionofvariabilitythanthis,itispossibletoshowwhyindividuals,whenfacedwithachoicebetweentwogambleswiththesameexpectedvalue,willusuallychoosetheonewithasmallervariabilityofreturn.Intuitively,thereasonbehindthisisthatweusuallyassumethatthemarginalutilityfromextradollarsofprizemoney(thatis,wealth)declinesastheprizesgetlarger.Aflipofacoinfor$1,000promisesarelativelysmallgainofutilityifyouwinbutalargelossofutilityifyoulose.Abetofonly$1is“inconsequential,”andthegaininutilityfromawinapproximatelycounterbalancesthedeclineinutilityfromaloss.9RiskaversionandfairbetsThisargumentisillustratedinFigure7.1.HereWrepresentsanindividual’scurrentwealthandUðWÞisavonNeumann–Morgensternutilityindexthatreflectshowheorshefeelsaboutvariouslevelsofwealth.10Inthefigure,UðWÞisdrawnasaconcavefunctionofWtoreflecttheassumptionofadiminishingmarginalutility.Itisassumedthatobtaininganextradollaraddslesstoenjoymentastotalwealthincreases.Nowsupposethispersonisofferedtwofairgambles:a50–50chanceofwinningorlosing$hora50–50chanceofwinningorlosing$2h.TheutilityofpresentwealthisUðWÞ:Theexpectedutilityifheorsheparticipatesingamble1isgivenbyUhðWÞ:UhðWÞ¼12UðWþhÞþ12UðWhÞ,(7.16)andtheexpectedutilityofgamble2isgivenbyU2hðWÞ:U2hðWÞ¼12UðWþ2hÞþ12UðW2hÞ.(7.17)Itisgeometricallyclearfromthefigurethat11UðWÞ>UhðWÞ>U2hðWÞ.(7.18)8Oftenthestatisticalconceptsofvarianceandstandarddeviationareusedtomeasurerisk.Wewilldosoatseveralplaceslaterinthischapter.9Technically,thisresultisadirectconsequenceofJensen’sinequalityinmathematicalstatistics.TheinequalitystatesthatifxisarandomvariableandfðxÞisaconcavefunctionofthatvariable,thenE½fðxÞf½EðxÞ.Intheutilitycontext,thismeansthatifutilityisconcaveinarandomvariablemeasuringwealth(i.e.,ifU0ðWÞ>0andU00ðWÞ<0Þ,thentheexpectedutilityofwealthwillbelessthantheutilityassociatedwiththeexpectedvalueofW.10Technically,UðWÞisanindirectutilityfunctionbecauseitistheconsumptionallowedbywealththatprovidesdirectutility.InChapter17wewilltakeuptherelationshipbetweenconsumption-basedutilityfunctionsandtheirimpliedindirectutilityofwealthfunctions.11Toseewhytheexpectedutilitiesforbethandbet2harethoseshown,noticethattheseexpectedutilitiesaretheaverageoftheutilitiesfromafavorableandanunfavorableoutcome.BecauseWishalfwaybetweenWþhandWh,UisalsohalfwaybetweenUðWþhÞandUðWhÞ.Chapter7UncertaintyandInformation207
Thispersonthereforewillpreferhisorhercurrentwealthtothatwealthcombinedwithafairgambleandwillpreferasmallgambletoalargeone.Thereasonforthisisthatwinningafairbetaddstoenjoymentlessthanlosinghurts.Althoughinthiscasetheprizesareequal,winningprovideslessthanlosingcostsinutilityterms.RiskaversionandinsuranceAsamatteroffact,thispersonmightbewillingtopaysomeamounttoavoidparticipatinginanygambleatall.NoticethatacertainwealthofWprovidesthesameutilityasdoesparticipatingingamble1.ThispersonwouldbewillingtopayuptoWWinordertoavoidparticipatinginthegamble.Thisexplainswhypeoplebuyinsurance.Theyaregivingupasmall,certainamount(theinsurancepremium)toavoidtheriskyoutcometheyarebeinginsuredagainst.Thepremiumapersonpaysforautomobilecollisioninsurance,forexample,providesapolicythatagreestorepairhisorhercarshouldanaccidentoccur.Thewidespreaduseofinsurancewouldseemtoimplythataversiontoriskisquiteprevalent.Hence,weintroducethefollowingdefinition.DEFINITIONRiskaversion.Anindividualwhoalwaysrefusesfairbetsissaidtoberiskaverse.Ifindividualsexhibitadiminishingmarginalutilityofwealth,theywillberiskaverse.Asaconsequence,theywillbewillingtopaysomethingtoavoidtakingfairbets.EXAMPLE7.2WillingnesstoPayforInsuranceToillustratetheconnectionbetweenriskaversionandinsurance,considerapersonwithacurrentwealthof$100,000whofacestheprospectofa25percentchanceoflosinghisorher$20,000automobilethroughtheftduringthenextyear.Supposealsothatthisperson’svonNeumann–Morgensternutilityindexislogarithmic;thatis,UðWÞ¼lnðWÞ:FIGURE7.1UtilityofWealthfromTwoFairBetsofDifferingVariabilityIftheutility-of-wealthfunctionisconcave(i.e.,exhibitsadiminishingmarginalutilityofwealth),thenthispersonwillrefusefairbets.A50–50betofwinningorlosinghdollars,forexample,yieldslessutility½UhðWÞthandoesrefusingthebet.Thereasonforthisisthatwinninghdollarsmeanslesstothisindividualthandoeslosinghdollars.UtilityU(W)U(W*)Uh(W*)U2h(W*)W*− 2hW*+2hWealth (W)W*− hW*+hW*W208Part2ChoiceandDemand
Ifthispersonfacesnextyearwithoutinsurance,expectedutilitywillbeexpectedutility¼0.75Uð100,000Þþ0.25Uð80,000Þ¼0.75ln100,000þ0.25ln80,000¼11.45714.(7.19)Inthissituation,afairinsurancepremiumwouldbe$5,000(25percentof$20,000,assumingthattheinsurancecompanyhasonlyclaimcostsandthatadministrativecostsare$0).Consequently,ifthispersoncompletelyinsuresthecar,hisorherwealthwillbe$95,000regardlessofwhetherthecarisstolen.Inthiscase,then,expectedutility¼Uð95,000Þ¼lnð95,000Þ¼11.46163.(7.20)Thispersonismadebetter-offbypurchasingfairinsurance.Indeed,wecandeterminethemaximumamountthatmightbepaidforthisinsuranceprotection(x)bysettingexpectedutility¼Uð100,000xÞ¼lnð100,000xÞ¼11.45714.(7.21)Solvingthisequationforxyields100,000x¼e11.45714.(7.22)Therefore,themaximumpremiumisx¼5,426.(7.23)Thispersonwouldbewillingtopayupto$426inadministrativecoststoaninsurancecompany(inadditiontothe$5,000premiumtocovertheexpectedvalueoftheloss).Evenwhenthesecostsarepaid,thispersonisaswell-offasheorshewouldbewhenfacingtheworlduninsured.QUERY:Supposeutilityhadbeenlinearinwealth.Wouldthispersonbewillingtopayanythingmorethantheactuariallyfairamountforinsurance?Howaboutthecasewhereutilityisaconvexfunctionofwealth?MEASURINGRISKAVERSIONInthestudyofeconomicchoicesinriskysituations,itissometimesconvenienttohaveaquantitativemeasureofhowaversetoriskapersonis.ThemostcommonlyusedmeasureofriskaversionwasinitiallydevelopedbyJ.W.Prattinthe1960s.12Thisriskaversionmeasure,rðWÞ,isdefinedasrðWÞ¼U00ðWÞU0ðWÞ.(7.24)Becausethedistinguishingfeatureofrisk-averseindividualsisadiminishingmarginalutilityofwealth½U00ðWÞ<0,Pratt’smeasureispositiveinsuchcases.Themeasureisinvariantwithrespecttolineartransformationsoftheutilityfunction,andthereforenotaffectedbywhichparticularvonNeumann–Morgensternorderingisused.12J.W.Pratt,“RiskAversionintheSmallandintheLarge,”Econometrica(January/April1964):122–36.Chapter7UncertaintyandInformation209
RiskaversionandinsurancepremiumsAusefulfeatureofthePrattmeasureofriskaversionisthatitisproportionaltotheamountanindividualwillpayforinsuranceagainsttakingafairbet.Supposethewinningsfromsuchafairbetaredenotedbytherandomvariableh(thisvariablemaybeeitherpositiveornegative).Becausethebetisfair,EðhÞ¼0.Nowletpbethesizeoftheinsurancepremiumthatwouldmaketheindividualexactlyindifferentbetweentakingthefairbethandpayingpwithcertaintytoavoidthegamble:E½UðWþhÞ¼UðWpÞ,(7.25)whereWistheindividual’scurrentwealth.WenowexpandbothsidesofEquation7.25usingTaylor’sseries.13Becausepisafixedamount,alinearapproximationtotheright-handsideoftheequationwillsuffice:UðWpÞ¼UðWÞpU0ðWÞþhigher-orderterms.(7.26)Fortheleft-handside,weneedaquadraticapproximationtoallowforthevariabilityinthegamble,h:E½UðWþhÞ¼EUðWÞþhU0ðWÞþh22U00ðWÞþhigher-orderterms(7.27)¼UðWÞþEðhÞU0ðWÞþEðh2Þ2U00ðWÞþhigher-orderterms.(7.28)IfwerecallthatEðhÞ¼0andthendropthehigher-ordertermsandusetheconstantktorepresentEðh2Þ=2,wecanequateEquations7.26and7.28asUðWÞpU0ðWÞ≅UðWÞþkU00ðWÞ(7.29)orp≅kU00ðWÞU0ðWÞ¼krðWÞ.(7.30)Thatis,theamountthatarisk-averseindividualiswillingtopaytoavoidafairbetisapproximatelyproportionaltoPratt’sriskaversionmeasure.14Becauseinsurancepremiumspaidareobservableintherealworld,theseareoftenusedtoestimateindividuals’riskaversioncoefficientsortocomparesuchcoefficientsamonggroupsofindividuals.Itisthereforepossibletousemarketinformationtolearnquiteabitaboutattitudestowardriskysituations.RiskaversionandwealthAnimportantquestioniswhetherriskaversionincreasesordecreaseswithwealth.Intuitively,onemightthinkthatthewillingnesstopaytoavoidagivenfairbetwoulddeclineaswealthincreases,becausediminishingmarginalutilitywouldmakepotentiallosseslessseriousforhigh-wealthindividuals.Thisintuitiveanswerisnotnecessarilycorrect,however,becausediminishingmarginalutilityalsomakesthegainsfromwinninggambleslessattractive.Sothe13Taylor’sseriesprovidesawayofapproximatinganydifferentiablefunctionaroundsomepoint.IffðxÞhasderivativesofallorders,itcanbeshownthatfðxþhÞ¼fðxÞþhf0ðxÞþðh2=2Þf00ðxÞþhigher-orderterms.Thepoint-slopeformulainalgebraisasimpleexampleofTaylor’sseries.14Inthiscase,thefactorofproportionalityisalsoproportionaltothevarianceofhbecauseVarðhÞ¼E½hEðhÞ2¼Eðh2Þ.Foranillustrationwherethisequationfitsexactly,seeExample7.3.210Part2ChoiceandDemand
netresultisindeterminate;italldependsonthepreciseshapeoftheutilityfunction.Indeed,ifutilityisquadraticinwealth,UðWÞ¼aþbWþcW2,(7.31)whereb>0andc<0,thenPratt’sriskaversionmeasureisrðWÞ¼U00ðWÞU0ðWÞ¼2cbþ2cW,(7.32)which,contrarytointuition,increasesaswealthincreases.Ontheotherhand,ifutilityislogarithmicinwealth,UðWÞ¼lnðWÞðW>0Þ,(7.33)thenwehaverðWÞ¼U00ðWÞU0ðWÞ¼1W,(7.34)whichdoesindeeddecreaseaswealthincreases.TheexponentialutilityfunctionUðWÞ¼eAW¼expðAWÞ(7.35)(whereAisapositiveconstant)exhibitsconstantabsoluteriskaversionoverallrangesofwealth,becausenowrðWÞ¼U00ðWÞU0ðWÞ¼A2eAWAeAW¼A.(7.36)Thisfeatureoftheexponentialutilityfunction15canbeusedtoprovidesomenumericalestimatesofthewillingnesstopaytoavoidgambles,asthenextexampleshows.EXAMPLE7.3ConstantRiskAversionSupposeanindividualwhoseinitialwealthisW0andwhoseutilityfunctionexhibitsconstantabsoluteriskaversionisfacinga50–50chanceofwinningorlosing$1,000.Howmuch(f)wouldheorshepaytoavoidtherisk?Tofindthisvalue,wesettheutilityofW0fequaltotheexpectedutilityfromthegamble:exp½AðW0fÞ¼0.5exp½AðW0þ1,000Þ0.5exp½AðW01,000Þ.(7.37)BecausethefactorexpðAW0ÞiscontainedinallofthetermsinEquation7.37,thismaybedividedout,therebyshowingthat(fortheexponentialutilityfunction)thewillingnesstopaytoavoidagivengambleisindependentofinitialwealth.TheremainingtermsexpðAfÞ¼0.5expð1,000AÞþ0.5expð1,000AÞ(7.38)cannowbeusedtosolveforfforvariousvaluesofA.IfA¼0:0001,thenf¼49:9;apersonwiththisdegreeofriskaversionwouldpayabout$50toavoidafairbetof$1,000.Alternatively,ifA¼0:0003,thismorerisk-aversepersonwouldpayf¼147:8toavoidthegamble.Becauseintuitionsuggeststhatthesevaluesarenotunreasonable,valuesoftheriskaversionparameterAintheserangesaresometimesusedforempiricalinvestigations.(continued)15Becausetheexponentialutilityfunctionexhibitsconstant(absolute)riskaversion,itissometimesabbreviatedbythetermCARAutility.Chapter7UncertaintyandInformation211
EXAMPLE7.3CONTINUEDAnormallydistributedrisk.Theconstantriskaversionutilityfunctioncanbecombinedwiththeassumptionthatapersonfacesarandomthreattohisorherwealththatfollowsanormaldistribution(seeChapter2)toarriveataparticularlysimpleresult.Specifically,ifaperson’sriskywealthfollowsanormaldistributionwithmeanμWandvarianceσ2W,thentheprobabilitydensityfunctionforwealthisgivenbyfðWÞ¼ð1=ffiffiffiffiffiffi2πpÞez2=2,wherez¼½ðWμWÞ=σW:IfthispersonhasautilityfunctionforwealthgivenbyUðWÞ¼eAW,thenexpectedutilityfromhisorherriskywealthisgivenbyE½UðWÞ¼∫∞∞UðWÞfðWÞdW¼1ffiffiffiffiffiffiffi2πp∫eAWe½ðWμWÞ=σW2=2dW.(7.39)Perhapssurprisingly,thisintegrationisnottoodifficulttoaccomplish,thoughitdoestakepatience.PerformingthisintegrationandtakingavarietyofmonotonictransformationsoftheresultingexpressionyieldsthefinalresultthatE½UðWÞ≅μWA2⋅σ2W.(7.40)Hence,expectedutilityisalinearfunctionofthetwoparametersofthewealthprobabilitydensityfunction,andtheindividual’sriskaversionparameter(A)determinesthesizeofthenegativeeffectofvariabilityonexpectedutility.Forexample,supposeapersonhasinvestedhisorherfundssothatwealthhasanexpectedvalueof$100,000butastandarddeviationðσWÞof$10,000.WiththeNormaldistribution,heorshemightthereforeexpectwealthtodeclinebelow$83,500about5percentofthetimeandriseabove$116,500asimilarfractionofthetime.Withtheseparameters,expectedutilityisgivenbyE½UðWÞ¼100,000ðA=2Þð10,000Þ2:IfA¼0:0001¼104,expectedutilityisgivenby100,00000:5⋅104⋅ð104Þ2¼95,000:Hence,thispersonreceivesthesameutilityfromhisorherriskywealthaswouldbeobtainedfromacertainwealthof$95,000.Amorerisk-aversepersonmighthaveA¼0:0003andinthiscasethe“certaintyequivalent”ofhisorherwealthwouldbe$85,000.QUERY:Supposethispersonhadtwowaystoinvesthisorherwealth:Allocation1,μW¼107,000andσW¼10,000;Allocation2,μW¼102,000andσW¼2,000:Howwouldthisperson’sattitudetowardriskaffecthisorherchoicebetweentheseallocations?16RelativeriskaversionItseemsunlikelythatthewillingnesstopaytoavoidagivengambleisindependentofaperson’swealth.AmoreappealingassumptionmaybethatsuchwillingnesstopayisinverselyproportionaltowealthandthattheexpressionrrðWÞ¼WrðWÞ¼WU00ðWÞU0ðWÞ(7.41)mightbeapproximatelyconstant.FollowingtheterminologyproposedbyJ.W.Pratt,17therrðW)functiondefinedinEquation7.41isameasureofrelativeriskaversion.Thepowerutilityfunction16Thisnumericalexample(veryroughly)approximateshistoricaldataonrealreturnsofstocksandbonds,respectively,thoughthecalculationsareillustrativeonly.17Pratt,“RiskAversion.”212Part2ChoiceandDemand
UðWÞ¼WRRðR<1,R6¼0Þ(7.42)andUðWÞ¼lnWðR¼0Þexhibitsdiminishingabsoluteriskaversion,rðWÞ¼U00ðWÞU0ðWÞ¼ðR1ÞWR2WR1¼ðR1ÞW,(7.43)butconstantrelativeriskaversion:rrðWÞ¼WrðWÞ¼ðR1Þ¼1R.(7.44)Empiricalevidence18isgenerallyconsistentwithvaluesofRintherangeof–3to–1.Hence,individualsseemtobesomewhatmoreriskaversethanisimpliedbythelogarithmicutilityfunction,thoughinmanyapplicationsthatfunctionprovidesareasonableapprox-imation.ItisusefultonotethattheconstantrelativeriskaversionutilityfunctioninEquation7.42hasthesameformasthegeneralCESutilityfunctionwefirstdescribedinChapter3.Thisprovidessomegeometricintuitionaboutthenatureofriskaversionthatwewillexplorelaterinthischapter.EXAMPLE7.4ConstantRelativeRiskAversionAnindividualwhosebehaviorischaracterizedbyaconstantrelativeriskaversionutilityfunctionwillbeconcernedaboutproportionalgainsorlossofwealth.Wecanthereforeaskwhatfractionofinitialwealth(f)suchapersonwouldbewillingtogiveuptoavoidafairgambleof,say,10percentofinitialwealth.First,weassumeR¼0,sothelogarithmicutilityfunctionisappropriate.Settingtheutilityofthisindividual’scertainremainingwealthequaltotheexpectedutilityofthe10percentgambleyieldsln½ð1fÞW0¼0:5lnð1:1W0Þþ0:5lnð0:9W0Þ.(7.45)BecauseeachtermcontainslnW0,initialwealthcanbeeliminatedfromthisexpression:lnð1fÞ¼0:5½lnð1:1Þþlnð0:9Þ¼lnð0:99Þ0:5;henceð1fÞ¼ð0:99Þ0:5¼0:995andf¼0:005.(7.46)Thispersonwillthussacrificeupto0.5percentofwealthtoavoidthe10percentgamble.AsimilarcalculationcanbeusedforthecaseR¼2toyieldf¼0:015.(7.47)Hencethismorerisk-aversepersonwouldbewillingtogiveup1.5percentofhisorherinitialwealthtoavoida10percentgamble.QUERY:Withtheconstantrelativeriskaversionfunction,howdoesthisperson’swillingnesstopaytoavoidagivenabsolutegamble(say,of1,000)dependonhisorherinitialwealth?18SomeauthorswritetheutilityfunctioninEquation7.42asUðWÞ¼W1a=ð1aÞandseektomeasurea¼1R.Inthiscase,aistherelativeriskaversionmeasure.TheconstantrelativeriskaversionfunctionissometimesabbreviatedasCRRA.Chapter7UncertaintyandInformation213
THEPORTFOLIOPROBLEMOneoftheclassicproblemsinthetheoryofbehaviorunderuncertaintyistheissueofhowmuchofhisorherwealtharisk-averseinvestorshouldinvestinariskyasset.Intuitively,itseemsthatthefractioninvestedinriskyassetsshouldbesmallerformorerisk-averseinvestors,andonegoalofouranalysiswillbetoshowthatformally.Togetstarted,assumethataninvestorhasacertainamountofwealth,W0,toinvestinoneoftwoassets.Thefirstassetyieldsacertainreturnofrf,whereasthesecondasset’sreturnisarandomvariable,er.Ifwelettheamountinvestedintheriskyassetbedenotedbyk,thenthisperson’swealthattheendofoneperiodwillbeW¼ðW0kÞð1þrfÞþkð1þerÞ¼W0ð1þrfÞþkðerrfÞ.(7.48)Noticethreethingsaboutthisend-of-periodwealth.First,Wisarandomvariablebecauseitsvaluedependsoner.Second,kcanbeeitherpositiveornegativeheredependingonwhetherthispersonbuystheriskyassetorsellsitshort.Asweshallsee,however,intheusualcaseEðerrfÞ>0andthiswillimplyk0.Finally,noticealsothatEquation7.48allowsforasolutioninwhichk>W0.Inthiscase,thisinvestorwouldleveragehisorherinvestmentintheriskyassetbyborrowingattherisk-freeraterf.IfweletUðWÞrepresentthisinvestor’sutilityfunction,thenthevonNeumann–Mor-gensterntheoremstatesthatheorshewillchoosektomaximizeE½UðWÞ.Thefirst-orderconditionforsuchamaximumis19∂E½UðWÞ∂k¼∂E½UðW0ð1þrfÞþkðerrfÞÞ∂k¼E½U0⋅ðerrfÞ¼0.(7.49)Becausethisfirst-orderconditionliesattheheartofmanyproblemsinthetheoryofuncer-tainty,itmaybeworthwhilespendingsometimetounderstanditintuitively.Equation7.49islookingattheexpectedvalueoftheproductofmarginalutilityandthetermerrf.Bothofthesetermsarerandom.Whethererrfispositiveornegativewilldependonhowwelltheriskyassetsperformoverthenextperiod.Butthereturnonthisriskyassetwillalsoaffectthisinvestor’send-of-periodwealthandthuswillaffecthisorhermarginalutility.Iftheinvestmentdoeswell,Wwillbelargeandmarginalutilitywillberelativelylow(becauseofdiminishingmarginalutility).Iftheinvestmentdoespoorly,wealthwillberelativelylowandmarginalutilitywillberelativelyhigh.Hence,intheexpectedvaluecalculationinEquation7.49,negativeoutcomesforerrfwillbeweightedmoreheavilythanpositiveoutcomestotaketheutilityconsequencesoftheseoutcomesintoaccount.IftheexpectedvalueinEquation7.49werepositive,apersoncouldincreasehisorherexpectedutilitybyinvestingmoreintheriskyasset.Iftheexpectedvaluewerenegative,heorshecouldincreaseexpectedutilitybyreducingtheamountoftheriskyassetheld.Onlywhenthefirst-orderconditionholdswillthispersonhaveanoptimalportfolio.TwootherconclusionscanbedrawnfromtheoptimalityconditioninEquation7.49.First,solongasEðerrfÞ>0,aninvestorwillchoosepositiveamountsoftheriskyasset.Toseewhy,noticethatmeetingEquation7.49willrequirethatfairlylargevaluesofU0beattachedtosituationswhereerrfturnsouttobenegative.Thatcanonlyhappeniftheinvestorownspositiveamountsoftheriskyassetsothatend-of-periodwealthislowinsuchsituations.Asecondconclusionfromthefirst-orderconditioninEquation7.49isthatinvestorswhoaremoreriskaversewillholdsmalleramountsoftheriskyassetthanwillinvestorswhoaremoretolerantofrisk.Again,thereasonrelatestotheshapeoftheU0function.Forveryrisk-averseinvestors,marginalutilityrisesrapidlyaswealthfalls.Hence,theyneedrelativelylittleexposuretopotentialnegativeoutcomesfromholdingtheriskyassettosatisfy19Incalculatingthisfirst-ordercondition,wecandifferentiatethroughtheexpectedvalueoperator.SeeChapter2foradiscussionofdifferentiatingintegrals.214Part2ChoiceandDemand
Equation7.49.InvestorswhoaremoretolerantofriskwillfindthatU0riseslessrapidlywhentheriskyassetperformspoorly,sotheywillbewillingtoholdmoreofit.Insummary,then,aformalstudyoftheportfolioproblemconfirmssimpleintuitionsabouthowpeoplechoosetoinvest.Tomakefurtherprogressonthequestionrequiresthatwemakesomespecificassumptionsabouttheinvestor’sutilityfunction.InExample7.5,welookatatwoexamples.EXAMPLE7.5ThePortfolioProblemwithSpecificUtilityFunctionsInthisproblemweshowtheimplicationsofassumingeitherCARAorCRRAutilityforthesolutiontotheportfolioallocationproblem.1.CARAUtility.IfUðWÞ¼expðAWÞthenthemarginalutilityfunctionisgivenbyU0ðWÞ¼AexpðAWÞ;substitutingforend-of-periodwealth,wehaveU0ðWÞ¼Aexp½AðW0ð1þrfÞþkðerrfÞÞ¼Aexp½AW0ð1þrfÞexp½AkðerrfÞ.(7.50)Thatis,themarginalutilityfunctioncanbeseparatedintoarandompartandanonrandompart(bothinitialwealthandtherisk-freeratearenonrandom).Hence,theoptimalityconditionfromEquation7.49canbewrittenasE½U0⋅ðerrfÞ¼Aexp½AW0ð1þrfÞE½expðAkðerrfÞÞ⋅ðerrfÞ¼0:(7.51)Nowwecandividebytheexponentialfunctionofinitialwealth,leavinganoptimalityconditionthatinvolvesonlytermsink,A,anderrf.Solvingthisconditionfortheoptimallevelofkcaningeneralbequitedifficult(butseeProblem7.14).Regardlessofthespecificsolution,however,Equation7.51showsthatthisoptimalinvestmentamountwillbeaconstantregardlessofthelevelofinitialwealth.Hence,theCARAfunctionimpliesthatthefractionofwealththataninvestorholdsinriskyassetsshoulddeclineaswealthincreases—aconclusionthatseemspreciselycontrarytoempiricaldata,whichtendtoshowthefractionofwealthheldinriskyassetsrisingwithwealth.2.CRRAUtility.IfUðWÞ¼WR=RthenthemarginalutilityfunctionisgivenbyU0ðWÞ¼WR1.SubstitutingtheexpressionforfinalwealthintothisequationyieldsU0ðWÞ¼½W0ð1þrfÞþkðerrfÞR1¼½W0ð1þrfÞR11þkW0ð1þrfÞ⋅ðerrfÞ.(7.52)InsertingthisexpressionintotheoptimalityconditioninEquation7.49showsthattheterm½W0ð1þrfÞR1canbecanceledout,implyingthattheoptimalsolutionwillnotinvolvetheabsolutelevelofinitialwealthbutonlytheratiok=W0ð1þrfÞ.Inwords,theCRRAutilityfunctionimpliesthatallindividualswiththesamerisktolerancewillholdthesamefractionofwealthinriskyassets,regardlessoftheirabsolutelevelsofwealth.ThoughthisconclusionisslightlymoreinaccordwiththefactsthanistheconclusionfromtheCARAfunction,itstillfallsshortofexplainingwhythefractionofwealthheldinriskyassetstendstorisewithwealth.QUERY:CanyousuggestareasonwhyinvestorsmightincreasetheproportionoftheirportfoliosinvestedinriskyassetsaswealthincreaseseventhoughtheirpreferencesarecharacterizedbytheCRRAutilityfunction?Chapter7UncertaintyandInformation215
THESTATE-PREFERENCEAPPROACHTOCHOICEUNDERUNCERTAINTYAlthoughouranalysisinthischapterhasofferedinsightsonanumberofissues,itseemsratherdifferentfromtheapproachwetookinotherchapters.Thebasicmodelofutilitymaximizationsubjecttoabudgetconstraintseemstohavebeenlost.Inordertomakefurtherprogressinthestudyofbehaviorunderuncertainty,wewillthereforedevelopsomenewtechniquesthatwillpermitustobringthediscussionofsuchbehaviorbackintothestandardchoice-theoreticframework.StatesoftheworldandcontingentcommoditiesWestartbyassumingthattheoutcomesofanyrandomeventcanbecategorizedintoanumberofstatesoftheworld.Wecannotpredictexactlywhatwillhappen,say,tomorrow,butweassumethatitispossibletocategorizeallofthepossiblethingsthatmighthappenintoafixednumberofwell-definedstates.Forexample,wemightmaketheverycrudeapproxima-tionofsayingthattheworldwillbeinonlyoneoftwopossiblestatestomorrow:Itwillbeeither“goodtimes”or“badtimes.”Onecouldmakeamuchfinergradationofstatesoftheworld(involvingevenmillionsofpossiblestates),butmostoftheessentialsofthetheorycanbedevelopedusingonlytwostates.Aconceptualideathatcanbedevelopedconcurrentlywiththenotionofstatesoftheworldisthatofcontingentcommodities.Thesearegoodsdeliveredonlyifaparticularstateoftheworldoccurs.Asanexample,“$1ingoodtimes”isacontingentcommoditythatpromisestheindividual$1ingoodtimesbutnothingshouldtomorrowturnouttobebadtimes.Itisevenpossible,bystretchingone’sintuitiveabilitysomewhat,toconceiveofbeingabletopurchasethiscommodity:Imightbeabletobuyfromsomeonethepromiseof$1iftomorrowturnsouttobegoodtimes.Becausetomorrowcouldbebad,thisgoodwillprobablysellforlessthan$1.Ifsomeonewerealsowillingtosellmethecontingentcommodity“$1inbadtimes,”thenIcouldassuremyselfofhaving$1tomorrowbybuyingthetwocontingentcommodities“$1ingoodtimes”and“$1inbadtimes.”UtilityanalysisExaminingutility-maximizingchoicesamongcontingentcommoditiesproceedsformallyinmuchthesamewayweanalyzedchoicespreviously.Theprincipaldifferenceisthat,afterthefact,apersonwillhaveobtainedonlyonecontingentgood(dependingonwhetheritturnsouttobegoodorbadtimes).Beforetheuncertaintyisresolved,however,theindividualhastwocontingentgoodsfromwhichtochooseandwillprobablybuysomeofeachbecauseheorshedoesnotknowwhichstatewilloccur.WedenotethesetwocontingentgoodsbyWg(wealthingoodtimes)andWb(wealthinbadtimes).Assumingthatutilityisindependentofwhichstateoccurs20andthatthisindividualbelievesthatgoodtimeswilloccurwithprobabilityπ,theexpectedutilityassociatedwiththesetwocontingentgoodsisVðWg,WbÞ¼πUðWgÞþð1πÞUðWbÞ.(7.53)Thisisthemagnitudethisindividualseekstomaximizegivenhisorherinitialwealth,W.20Thisassumptionisuntenableincircumstanceswhereutilityofwealthdependsonthestateoftheworld.Forexample,theutilityprovidedbyagivenlevelofwealthmaydifferdependingonwhetheranindividualis“sick”or“healthy.”Wewillnotpursuesuchcomplicationshere,however.Formostofouranalysis,utilityisassumedtobeconcaveinwealth:U0ðWÞ>0,U00ðWÞ<0.216Part2ChoiceandDemand
PricesofcontingentcommoditiesAssumingthatthispersoncanpurchaseadollarofwealthingoodtimesforpgandadollarofwealthinbadtimesforpb,hisorherbudgetconstraintisthenW¼pgWgþpbWb.(7.54)Thepriceratiopg=pbshowshowthispersoncantradedollarsofwealthingoodtimesfordollarsinbadtimes.If,forexample,pg¼0:80andpb¼0:20,thesacrificeof$1ofwealthingoodtimeswouldpermitthispersontobuycontingentclaimsyielding$4ofwealthshouldtimesturnouttobebad.Whethersuchatradewouldimproveutilitywill,ofcourse,dependonthespecificsofthesituation.Butlookingatproblemsinvolvinguncertaintyassituationsinwhichvariouscontingentclaimsaretradedisthekeyinsightofferedbythestate-preferencemodel.FairmarketsforcontingentgoodsIfmarketsforcontingentwealthclaimsarewelldevelopedandthereisgeneralagreementaboutthelikelihoodofgoodtimes(π),thenpricesfortheseclaimswillbeactuariallyfair—thatis,theywillequaltheunderlyingprobabilities:pg¼π,pb¼ð1πÞ:(7.55)Hence,thepriceratiopg=pbwillsimplyreflecttheoddsinfavorofgoodtimes:pgpb¼π1π.(7.56)Inourpreviousexample,ifpg¼π¼0:8andpb¼ð1πÞ¼0:2thenπ=ð1πÞ¼4.Inthiscasetheoddsinfavorofgoodtimeswouldbestatedas“4-to-1.”Fairmarketsforcontingentclaims(suchasinsurancemarkets)willalsoreflecttheseodds.Ananalogyisprovidedbythe“odds”quotedinhorseraces.Theseoddsare“fair”whentheyreflectthetrueprobabilitiesthatvarioushorseswillwin.RiskaversionWearenowinapositiontoshowhowriskaversionismanifestedinthestate-preferencemodel.Specifically,wecanshowthat,ifcontingentclaimsmarketsarefair,thenautility-maximizingindividualwilloptforasituationinwhichWg¼Wb;thatis,heorshewillarrangematterssothatthewealthultimatelyobtainedisthesamenomatterwhatstateoccurs.Asinpreviouschapters,maximizationofutilitysubjecttoabudgetconstraintrequiresthatthisindividualsettheMRSofWgforWbequaltotheratioofthese“goods”prices:MRS¼∂V=∂Wg∂V=∂Wb¼πU0ðWgÞð1πÞU0ðWbÞ¼pgpb.(7.57)Inviewoftheassumptionthatmarketsforcontingentclaimsarefair(Equation7.56),thisfirst-orderconditionreducestoU0ðWgÞU0ðWbÞ¼1or21Wg¼Wb.(7.58)21ThissteprequiresthatutilitybestateindependentandthatU0ðWÞ>0.Chapter7UncertaintyandInformation217
Hencethisindividual,whenfacedwithfairmarketsincontingentclaimsonwealth,willberiskaverseandwillchoosetoensurethatheorshehasthesamelevelofwealthregardlessofwhichstateoccurs.AgraphicanalysisFigure7.2illustratesriskaversionwithagraph.Thisindividual’sbudgetconstraint(I)isshowntobetangenttotheU1indifferencecurvewhereWg¼Wb—apointonthe“certaintyline”wherewealthðWÞisindependentofwhichstateoftheworldoccurs.AtWtheslopeoftheindifferencecurve½π=ð1πÞispreciselyequaltothepriceratiopg=pb.Ifthemarketforcontingentwealthclaimswerenotfair,utilitymaximizationmightnotoccuronthecertaintyline.Suppose,forexample,thatπ=ð1πÞ¼4butthatpg=pb¼2becauseensuringwealthinbadtimesprovesquitecostly.InthiscasethebudgetconstraintwouldresemblelineI0inFigure7.2andutilitymaximizationwouldoccurbelowthecertaintyline.22InthiscasethisindividualwouldgambleabitbyoptingforWg>Wb,becauseclaimsonWbarerelativelycostly.Example7.6showstheusefulnessofthisapproachinevaluatingsomeofthealternativesthatmightbeavailable.FIGURE7.2RiskAversionsintheState-PreferenceModelThelineIrepresentstheindividual’sbudgetconstraintforcontingentwealthclaims:W¼pgWgþpbWb.Ifthemarketforcontingentclaimsisactuariallyfair½pg=pb¼π=ð1−πÞ,thenutilitymaxi-mizationwilloccuronthecertaintylinewhereWg¼Wb¼W.Ifpricesarenotactuariallyfair,thebudgetconstraintmayresembleI0andutilitymaximizationwilloccuratapointwhereWg>Wb.CertaintylineWbWgl′lW*W*U122Because(asEquation7.58shows)theMRSonthecertaintylineisalwaysπ=ð1−πÞ,tangencieswithaflatterslopethanthismustoccurbelowtheline.218Part2ChoiceandDemand
EXAMPLE7.6InsuranceintheState-PreferenceModelWecanillustratethestate-preferenceapproachbyrecastingtheautoinsuranceillustrationfromExample7.2asaprobleminvolvingthetwocontingentcommodities“wealthwithnotheft”ðWgÞand“wealthwithatheft”ðWbÞ.If,asbefore,weassumelogarithmicutilityandthattheprobabilityofatheft(thatis,1π)is0.25,thenexpectedutility¼0.75UðWgÞþ0:25UðWbÞ¼0.75lnWgþ0:25lnWb.(7.59)Iftheindividualtakesnoactionthenutilityisdeterminedbytheinitialwealthendowment,Wg¼100,000andWb¼80,000,soexpectedutility¼0:75ln100,000þ0.25ln80,000¼11.45714.(7.60)Tostudytradesawayfromtheseinitialendowments,wewritethebudgetconstraintintermsofthepricesofthecontingentcommodities,pgandpb:pgWgþpbWb¼pgWgþpbWb.(7.61)Assumingthatthesepricesequaltheprobabilitiesofthetwostatesðpg¼0:75,pb¼0:25Þ,thisconstraintcanbewritten0:75ð100,000Þþ0:25ð80,000Þ¼95,000¼0:75Wgþ0:25Wb;(7.62)thatis,theexpectedvalueofwealthis$95,000,andthispersoncanallocatethisamountbetweenWgandWb.NowmaximizationofutilitywithrespecttothisbudgetconstraintyieldsWg¼Wb¼95,000.Consequently,theindividualwillmovetothecertaintylineandreceiveanexpectedutilityofexpectedutility¼ln95,000¼11.46163,(7.63)aclearimprovementoverdoingnothing.Toobtainthisimprovement,thispersonmustbeabletotransfer$5,000ofwealthingoodtimes(notheft)into$15,000ofextrawealthinbadtimes(theft).Afairinsurancecontractwouldallowthisbecauseitwouldcost$5,000butreturn$20,000shouldatheftoccur(butnothingshouldnotheftoccur).Noticeherethatthewealthchangespromisedbyinsurance—dWb=dWg¼15,000=5,000¼3—exactlyequalthenegativeoftheoddsratioπ=ð1πÞ¼0:75=0:25¼3.Apolicywithadeductibleprovision.Anumberofotherinsurancecontractsmightbeutilityimprovinginthissituation,thoughnotallofthemwouldleadtochoicesthatlieonthecertaintyline.Forexample,apolicythatcost$5,200andreturned$20,000incaseofatheftwouldpermitthispersontoreachthecertaintylinewithWg¼Wb¼94,800andexpectedutility¼ln94,800¼11.45953,(7.64)whichalsoexceedstheutilityobtainablefromtheinitialendowment.Apolicythatcosts$4,900andrequirestheindividualtoincurthefirst$1,000ofalossfromtheftwouldyieldWg¼100,0004,900¼95,100,Wb¼80,0004,900þ19,000¼94,100;(7.65)thenexpectedutility¼0:75ln95,100þ0:25ln94,100¼11:46004:(7.66)Althoughthispolicydoesnotpermitthispersontoreachthecertaintyline,itisutilityimproving.Insuranceneednotbecompleteinordertoofferthepromiseofhigherutility.(continued)Chapter7UncertaintyandInformation219
EXAMPLE7.6CONTINUEDQUERY:Whatisthemaximumamountanindividualwouldbewillingtopayforaninsurancepolicyunderwhichheorshehadtoabsorbthefirst$1,000ofloss?RiskaversionandriskpremiumsThestate-preferencemodelisalsoespeciallyusefulforanalyzingtherelationshipbetweenriskaversionandindividuals’willingnesstopayforrisk.Considertwopeople,eachofwhomstartswithacertainwealth,W.EachpersonseekstomaximizeanexpectedutilityfunctionoftheformVðWg,WbÞ¼πWRgRþð1πÞWRbR.(7.67)Heretheutilityfunctionexhibitsconstantrelativeriskaversion(seeExample7.4).NoticealsothatthefunctioncloselyresemblestheCESutilityfunctionweexaminedinChapter3andelsewhere.TheparameterRdeterminesboththedegreeofriskaversionandthedegreeofcurvatureofindifferencecurvesimpliedbythefunction.Averyrisk-averseindividualwillhavealargenegativevalueforRandhavesharplycurvedindifferencecurves,suchasU1showninFigure7.3.ApersonwithmoretoleranceforriskwillhaveahighervalueofRandflatterindifferencecurves(suchasU2).23FIGURE7.3RiskAversionandRiskPremiumsIndifferencecurveU1representsthepreferencesofaveryrisk-averseperson,whereasthepersonwithpreferencesrepresentedbyU2iswillingtoassumemorerisk.Whenfacedwiththeriskoflosinghinbadtimes,person2willrequirecompensationofW2−Wingoodtimeswhereasperson1willrequirealargeramountgivenbyW1−W.CertaintylineWbWgW*W*− hW*W1W2U1U223TangencyofU1andU2atWisensured,becausetheMRSalongthecertaintylineisgivenbyπ=ð1πÞregardlessofthevalueofR.220Part2ChoiceandDemand
Supposenowtheseindividualsarefacedwiththeprospectoflosinghdollarsofwealthinbadtimes.Suchariskwouldbeacceptabletoindividual2ifwealthingoodtimesweretoincreasefromWtoW2.Fortheveryrisk-averseindividual1,however,wealthwouldhavetoincreasetoW1tomaketheriskacceptable.ThedifferencebetweenW1andW2thereforeindicatestheeffectofriskaversiononwillingnesstoassumerisk.Someoftheproblemsinthischaptermakeuseofthisgraphicdeviceforshowingtheconnectionbetweenpreferences(asreflectedbytheutilityfunctioninEquation7.67)andbehaviorinriskysituations.THEECONOMICSOFINFORMATIONInformationisavaluableeconomicresource.Peoplewhoknowwheretobuyhigh-qualitygoodscheaplycanmaketheirbudgetsstretchfurtherthanthosewhodon’t;farmerswithaccesstobetterweatherforecastingmaybeabletoavoidcostlymistakes;andgovernmentenvironmentalregulationcanbemoreefficientifitisbasedongoodscientificknowledge.Althoughtheseobservationsaboutthevalueofinformationhavelongbeenrecognized,formaleconomicmodelingofinformationacquisitionanditsimplicationsforresourceallocationarefairlyrecent.24Despiteitslatestart,thestudyofinformationeconomicshasbecomeoneofthemajorareasincurrentresearch.Inthischapterwebrieflysurveysomeoftheissuesraisedbythisresearch.FarmoredetailontheeconomicsofinformationisprovidedinChapter18.PROPERTIESOFINFORMATIONOnedifficultyencounteredbyeconomistswhowishtostudytheeconomicsofinformationisthat“information”itselfisnoteasytodefine.Unliketheeconomicgoodswehavebeenstudyingsofar,the“quantity”ofinformationobtainablefromvariousactionsisnotwelldefined,andwhatinformationisobtainedisnothomogeneousamongitsusers.Theformsofeconomicallyusefulinformationaresimplytoovariedtopermitthekindsofprice-quantitycharacterizationswehavebeenusingforbasicconsumergoods.Instead,economistswhowishtostudyinformationmusttakesomecaretospecifywhattheinformationalenvironmentisinaparticulardecisionproblem(thisissometimescalledtheinformationset)andhowthatenvironmentmightbechangedthroughindividualactions.Asmightbeexpected,thisapproachhasresultedinavastnumberofmodelsofspecificsituationswithlittleoverallcommonalityamongthem.Asecondcomplicationinvolvedinthestudyofinformationconcernssometechnicalpropertiesofinformationitself.Mostinformationisdurableandretainsvalueafterithasbeenused.Unlikeahotdog,whichisconsumedonlyonce,knowledgeofaspecialsalecanbeusednotonlybythepersonwhodiscoversitbutalsobyanyfriendswithwhomtheinformationisshared.Thefriendsthenmaygainfromthisinformationeventhoughtheydon’thavetospendanythingtoobtainit.Indeed,inaspecialcaseofthissituation,informationhasthecharacteristicofapurepublicgood(seeChapter19).Thatis,theinformationisbothnonrivalinthatothersmayuseitatzerocostandnonexclusiveinthatnoindividualcanpreventothersfromusingtheinformation.Theclassicexampleofthesepropertiesisanewscientificdis-covery.Whensomeprehistoricpeopleinventedthewheel,otherscoulduseitwithoutdetractingfromthevalueofthediscovery,andeveryonewhosawthewheelcouldcopyitfreely.Thesetechnicalpropertiesofinformationimplythatmarketmechanismsmayoftenope-rateimperfectlyinallocatingresourcestoinformationprovisionandacquisition.Standard24Theformalmodelingofinformationissometimesdatedfromthepath-breakingarticlebyG.J.Stigler,“TheEconomicsofInformation,”JournalofPoliticalEconomy(June1961):213–25.Chapter7UncertaintyandInformation221
modelsofsupplyanddemandmaythereforebeofrelativelylimiteduseinunderstandingsuchactivities.Ataminimum,modelshavetobedevelopedthataccuratelyreflectthepropertiesbeingassumedabouttheinformationalenvironment.Throughoutthelatterportionsofthisbook,wewilldescribesomeofthesituationsinwhichsuchmodelsarecalledfor.Here,however,wewillpayrelativelylittleattentiontosupply-demandequilibriaandwillinsteadfocusprimarilyoninformationissuesthatariseinthetheoryofindividualchoice.THEVALUEOFINFORMATIONDevelopingmodelsofinformationacquisitionnecessarilyrequiresusingtoolsfromourstudyofuncertaintyearlierinthischapter.Lackofinformationclearlyrepresentsaproblemin-volvinguncertaintyforadecisionmaker.Intheabsenceofperfectinformation,heorshemaynotbeabletoknowexactlywhattheconsequencesofaparticularactionwillbe.Betterinformationcanreducethatuncertaintyandthereforeleadtobetterdecisionsthatprovideincreasedutility.InformationandsubjectivepossibilitiesThisrelationshipbetweenuncertaintyandinformationacquisitioncanbeillustratedusingthestate-preferencemodel.Earlierweassumedthatanindividualformssubjectiveopinionsabouttheprobabilitiesofthetwostatesoftheworld,“goodtimes”and“badtimes.”Inthismodel,informationisvaluablebecauseitallowstheindividualtorevisehisorherestimatesoftheseprobabilitiesandtotakeadvantageoftheserevisions.Forexample,informationthatforetoldthattomorrowwoulddefinitelybe“goodtimes”wouldcausethispersontorevisehisorherprobabilitiestoπg¼1,πb¼0andtochangehisorherpurchasesaccordingly.Whentheinformationreceivedislessdefinitive,theprobabilitiesmaybechangedonlyslightly,butevensmallrevisionsmaybequitevaluable.IfyouasksomefriendsabouttheirexperienceswithafewbrandsofDVDplayersyouarethinkingofbuying,youmaynotwanttheiropinionstodictateyourchoice.Thepricesoftheplayersandothertypesofinformation(say,obtainedfromconsultingConsumerReports)willalsoaffectyourviews.Ultimately,however,youmustprocessallofthesefactorsintoadecisionthatreflectsyourassessmentoftheprobabilitiesofvarious“statesoftheworld”(inthiscase,thequalityobtainedfrombuyingdifferentbrands).AformalmodelToillustratewhyinformationhasvalue,assumethatanindividualfacesanuncertainsituationinvolving“good”and“bad”timesandthatheorshecaninvestina“message”thatwillyieldsomeinformationabouttheprobabilitiesoftheseoutcomes.Thismessagecantakeontwopotentialvalues,1or2,withprobabilitiespandð1pÞ,respectively.Ifthemessagetakesthevalue1,thenthispersonwillbelievethattheprobabilityofgoodtimesisgivenbyπ1g[andtheprobabilityofbadtimesbyπ1b¼ð1π1gÞ].Ifthemessagetakesthevalue2,ontheotherhand,theprobabilitiesareπ2gandð1π2gÞ.Oncethemessageisreceived,thispersonhastheoppor-tunitytomaximizeexpectedutilityonthebasisoftheseprobabilities.Ingeneral,itwouldbeexpectedthatheorshewillmakedifferentdecisionsdependingonwhatthemessageis.LetV1bethe(indirect)maximalexpectedutilitywhenthemessagetakesthevalue1andV2bethismaximalutilitywhenthemessagetakesthevalue2.Hence,whenthispersonisconsideringpurchasingthemessage(thatis,beforeitisactuallyreceived),expectedutilityisgivenby:Ewithm¼pV1þð1pÞV2.(7.68)Nowlet’sconsiderthesituationofthispersonwhenheorshedecidesnottopurchasethemessage.Inthiscase,asingledecisionmustbemadethatisbasedontheprobabilitiesof222Part2ChoiceandDemand
goodandbadtimes,π0gandð1π0gÞ.Becausetheindividualknowsthevariousprobabilitiesinvolved,consistencyrequiresthatπ0g¼pπ1gþð1pÞπ2g.NowletV0representthemaximalexpectedutilitythispersoncanobtainwiththeseprobabilities.Hence,wecanwriteexpectedutilitywithoutthemessageasEwithoutm¼V0¼pV0þð1pÞV0.(7.69)AcomparisonofEquations7.68and7.69showsthatthispersoncanalwaysachieveEwithoutmwhenheorshehastheinformationprovidedbythemessage.Thatis,heorshecanjustchoosetodisregardwhatthemessagesays.Butifheorshechoosestomakenew,differentdecisionsbasedontheinformationinthemessage,itmustbethecasethatthisinformationhasvalue.Thatis:EwithmEwithoutm.(7.70)Presumably,then,thispersonwillbewillingtopaysomethingforthemessagebecauseofthebetterdecision-makingopportunitiesitprovides.25Example7.7providesasimpleillustration.EXAMPLE7.7TheValueofInformationonPricesToillustratehownewinformationmayaffectutilitymaximization,let’sreturntooneofthefirstmodelsweusedinChapter4.ThereweshowedthatifanindividualconsumestwogoodsandutilityisgivenbyUðx,yÞ¼x0:5y0:5,thentheindirectutilityfunctionisVðpx,py,IÞ¼I2p0:5xp0:5y.(7.71)Asanumericalexample,weconsideredthecasepx¼1,py¼4,I¼8,andcalculatedthatV¼I=2⋅1⋅2¼2.Nowsupposethatgoodyrepresents,say,acanofbrand-nametennisballs,andthisconsumerknowsthatthesecanbeboughtatapriceofeither$3or$5fromtwostoresbutdoesnotknowwhichstorechargeswhichprice.Becauseitisequallylikelythateitherstorehasthelowerprice,theexpectedvalueofthepriceis$4.But,becausetheindirectutilityfunctionisconvexinprice,thispersonreceivesanexpectedvalueofgreaterthanV¼2fromshoppingbecauseheorshecanbuymoreifthelow-pricedstoreisencountered.Beforeshopping,expectedutilityisE½Vðpx,py,IÞ¼0:5⋅Vð1,3,8Þþ0:5⋅Vð1,5,8Þ¼1:155þ0:894¼2:049.(7.72)Iftheconsumerknewwhichstoreofferedthelowerprice,utilitywouldbeevengreater.Ifthispersoncouldbuyatpy¼3withcertainty,thenindirectutilitywouldbeV¼2:309andwecanusethisresulttocalculatewhatthevalueofthisinformationis.Thatis,wecanaskwhatlevelofincome,I,wouldyieldthesameutilitywhenpy¼3,asisobtainedwhenthispersonmustchoosewhichstoretopatronizebychance.HenceweneedtosolvetheequationVðpx,py,IÞ¼I2p0:5xp0:5y¼I2⋅1⋅30:5¼2:049.(7.73)SolvingthisyieldsavalueofI¼7:098.Hence,thispersonwouldbewillingtopayupto0.902ð¼87.098Þfortheinformation.Noticethatavailabilityofthepriceinformation(continued)25Amoregeneralwaytostatethisresultistoconsiderthepropertiesoftheindividual’sindirectexpectedutilityfunction(V)asdependentontheprobabilitiesintheproblem.Thatis,VðπgÞ¼max½πgUðWgÞþð1πgÞUðWbÞ.Compar-ingEquations7.68and7.69amountstocomparingpVðπ1gÞþð1pÞVðπ2gÞtoVðπ0gÞ¼V½pπ1gþð1pÞπ2g.BecausetheVfunctionisconvexinπg,theinequalityinEquation7.70necessarilyholds.Chapter7UncertaintyandInformation223
EXAMPLE7.7CONTINUEDhelpsthispersonintwoways:(1)itincreasestheprobabilityheorshewillpatronizethelow-pricestorefrom0.5to1.0;and(2)itpermitsthispersontotakeadvantageofthelowerpriceofferedbybuyingmore.QUERY:Itseemsoddinthisproblemthatexpectedutilitywithpriceuncertainty(V¼2.049)isgreaterthanutilitywhenpricetakesitsexpectedvalue(V¼2).Doesthisviolatetheassumptionofriskaversion?FLEXIBILITYANDOPTIONVALUETheavailabilityofnewinformationallowsindividualstomakebetterdecisionsinsituationsinvolvinguncertainty.Itmaythereforebebeneficialtotrytopostponemakingdecisionsuntiltheinformationarrives.Ofcourse,flexibilitymaysometimesinvolvecostsofitsown,sothedecision-makingprocesscanbecomecomplex.Forexample,someoneplanningatriptotheCaribbeanwouldobviouslyliketoknowwhetherheorshewillhavegoodweather.Avacationerwhocouldwaituntilthelastminuteindecidingwhentogocouldusethelatestweatherforecasttomakethatdecision.Butwaitingmaybecostly(perhapsbecauselast-minuteairfaresaremuchhigher),sothechoicecanbeadifficultone.Clearlytheoptiontodelaythedecisionisvaluable,butwhetherthis“optionvalue”exceedsthecostsinvolvedindelayisthecrucialquestion.Modelingtheimportanceofflexibilityindecisionmakinghasbecomeamajortopicinthestudyofuncertaintyandinformation.“Realoptiontheory”hascometobeanimportantcomponentoffinancialandmanagementtheory.Otherapplicationsarebeginningtoemergeinsuchdiversefieldsasdevelopmenteconomics,naturalresourceeconomics,andlawandeconomics.Becausethisbookfocusesongeneraltheory,however,wecannotpursuetheseinterestinginnovationshere.Rather,ourbrieftreatmentwillfocusonhowquestionsofflexibilitymightbeincorporatedintosomeofthemodelswehavealreadyexamined,followedbyafewconcludingremarks.FlexibilityintheportfoliomodelSomeofthebasicprinciplesofrealoptiontheorycanbeillustratedbycombiningtheportfoliochoicemodelthatweintroducedearlierinthischapterwiththeideaofinformationmessagesintroducedintheprevioussection.Supposethataninvestorisconsideringputtingsomeportionofhisorherwealth(k)intoariskyasset.Thereturnontheassetisrandomanditscharacteristicswilldependonwhetherthereare“goodtimes”or“badtimes.”Thereturnsunderthesetwosituationsaredesignatedbyer1ander2,respectively.First,considerasituationwherethispersonwillgetamessagetellinghimorherwhetheritisgoodorbadtimes,butthemessagewillarriveaftertheinvestmentdecisionismade.Theprobabilitythatthemessagewillindicategoodtimesisgivenbyp.Inthiscase,thispersoncanbeviewedasinvestinginariskyassetwhosereturnisgivenbyer0¼per1þð1pÞer2.Followingtheprocedureoutlinedearlier,associatedwiththisassetwillbeanoptimalinvestment,k0,andtheexpectedutilityassociatedwiththisportfoliowillbeU0.Suppose,alternatively,thatthispersonhastheflexibilitytowaituntilafterthemessageisreceivedtodecideonhowhisorherportfoliowillbeallocated.Ifthemessagerevealsgoodtimes,thenheorshewillchoosetoinvestk1intheriskyassetandexpectedutilitywillbeU1.224Part2ChoiceandDemand
Ontheotherhand,ifthemessagerevealsbadtimes,thenheorshewillchoosetoinvestk2intheriskyassetandexpectedutilitywillbeU2.Hence,theexpectedutilityprovidedbytheoptionofwaitingbeforechoosingkwillbeU¼pU1þð1pÞU2.(7.74)Asbefore,itisclearthatUU0.Theinvestorcouldalwayschoosetoinvestk0nomatterwhatthemessagesays,butifheorshechoosesdifferingk’sdependingontheinformationinthemessage,itmustbebecausethatstrategyprovidesmoreexpectedutility.WhenU>U0,theoptiontowaithasrealvalueandthispersonwillbewillingtopaysomething(say,inforgoneinterestreceipts)forthatpossibility.FinancialoptionsInsomecasesoptionvaluescanbeobservedinactualmarkets.Forexample,financialoptionsprovideabuyertheright,butnottheobligation,toconductaneconomictransaction(typicallybuyingorsellingastock)atspecifiedtermsatacertaindateinthefuture.AnoptiononMicrosoftCorporationshares,forinstance,mightgivethebuyertheright(butnottheobligation)tobuythestockinsixmonthsatapriceof$30pershare.Oraforeignexchangeoptionmightprovidethebuyerwiththerighttobuyeurosatapriceof$1.30pereurointhreemonths.Allsuchoptionshavevaluebecausetheypermittheownertoeithermakeordeclinethespecifiedtransactiondependingonwhatnewinformationbecomesavailableovertheoption’sduration.Suchbuilt-inflexibilityisusefulinawidevarietyofinvestmentstrategies.OptionsembeddedinothertransactionsManyothertypesofeconomictransactionshaveoptionsembeddedinthem.Forexample,thepurchaseofagoodthatcomeswitha“money-backguarantee”givesthebuyeranoptiontoreversethetransactionshouldhisorherexperiencewiththegoodbeunfavorable.Similarly,manymortgagesprovidethehomeownerwiththeoptiontopayofftheloanwithoutpenaltyshouldconditionschange.Allsuchoptionsareclearlyvaluable.Acarbuyerisnotrequiredtoreturnhisorherpurchaseifthecarrunswellandthehomeownerneednotpayoffthemortgageifinterestratesrise.Hence,embeddingabuyer’soptioninatransactioncanonlyincreasethevalueofthattransactiontothebuyer.Contractswithsuchoptionswouldbeexpectedtohavehigherprices.Ontheotherhand,transactionswithembeddedselleroptions(forexample,therighttorepurchaseahouseatastatedprice)willhavelowerprices.Examiningpricedifferencescanthereforebeonewaytoinferthevalueofsomeembeddedoptions.ASYMMETRYOFINFORMATIONOneobviousimplicationofthestudyofinformationacquisitionisthatthelevelofinforma-tionthatanindividualbuyswilldependontheper-unitpriceofinformationmessages.Unlikethemarketpriceformostgoods(whichweusuallyassumetobethesameforeveryone),therearemanyreasonstobelievethatinformationcostsmaydiffersignificantlyamongindividuals.Someindividualsmaypossessspecificskillsrelevanttoinformationacquisition(theymaybetrainedmechanics,forexample)whereasothersmaynotpossesssuchskills.Someindividualsmayhaveothertypesofexperiencethatyieldvaluableinformation,whereasothersmaylackthatexperience.Forexample,thesellerofaproductwillusuallyknowmoreaboutitslimitationsthanwillabuyer,becausethesellerwillknowpreciselyhowthegoodwasmadeandwherepossibleproblemsmightarise.Similarly,large-scalerepeatbuyersofagoodmayhavegreateraccesstoinformationaboutitthanwouldfirst-timebuyers.Finally,someChapter7UncertaintyandInformation225
individualsmayhaveinvestedinsometypesofinformationservices(forexample,byhavingacomputerlinktoabrokeragefirmorbysubscribingtoConsumerReports)thatmakethemarginalcostofobtainingadditionalinformationlowerthanforsomeonewithoutsuchaninvestment.Allofthesefactorssuggestthatthelevelofinformationwillsometimesdifferamongtheparticipantsinmarkettransactions.Ofcourse,inmanyinstances,informationcostsmaybelowandsuchdifferencesmaybeminor.Mostpeoplecanappraisethequalityoffreshvegetablesfairlywelljustbylookingatthem,forexample.Butwheninformationcostsarehighandvariableacrossindividuals,wewouldexpectthemtofinditadvantageoustoacquiredifferentamountsofinformation.WewillpostponeadetailedstudyofsuchsituationsuntilChapter18.PROBLEMS7.1Georgeisseentoplaceaneven-money$100,000betontheBullstowintheNBAFinals.IfGeorgehasalogarithmicutility-of-wealthfunctionandifhiscurrentwealthis$1,000,000,whatmusthebelieveistheminimumprobabilitythattheBullswillwin?7.2Showthatifanindividual’sutility-of-wealthfunctionisconvexthenheorshewillpreferfairgamblestoincomecertaintyandmayevenbewillingtoacceptsomewhatunfairgambles.Doyoubelievethissortofrisk-takingbehavioriscommon?Whatfactorsmighttendtolimititsoccurrence?7.3Anindividualpurchasesadozeneggsandmusttakethemhome.Althoughmakingtripshomeiscostless,thereisa50percentchancethatalloftheeggscarriedonanyonetripwillbebrokenduringthetrip.Theindividualconsiderstwostrategies:(1)takeall12eggsinonetrip;or(2)taketwotripswith6eggsineachtrip.SUMMARYThegoalofthischapterwastoprovidesomebasicmaterialforthestudyofindividualbehaviorinuncertainsituations.Thekeyconceptscoveredmaybelistedasfollows.•Themostcommonwaytomodelbehaviorunderuncer-taintyistoassumethatindividualsseektomaximizetheexpectedutilityoftheiractions.•Individualswhoexhibitadiminishingmarginalutilityofwealthareriskaverse.Thatis,theygenerallyrefusefairbets.•Risk-averseindividualswillwishtoinsurethemselvescompletelyagainstuncertaineventsifinsurancepre-miumsareactuariallyfair.Theymaybewillingtopaymorethanactuariallyfairpremiumsinordertoavoidtakingrisks.•Twoutilityfunctionshavebeenextensivelyusedinthestudyofbehaviorunderuncertainty:theconstantabsoluteriskaversion(CARA)functionandthecon-stantrelativeriskaversion(CRRA)function.Neitheriscompletelysatisfactoryontheoreticalgrounds.•Oneofthemostextensivelystudiedissuesintheeco-nomicsofuncertaintyisthe“portfolioproblem,”whichaskshowaninvestorwillsplithisorherwealthbetweenriskyandrisk-freeassets.Insomecasesitispossibletoobtainprecisesolutionstothisproblem,dependingonthenatureoftheriskyassetsthatareavailable.•Thestate-preferenceapproachallowsdecisionmakingunderuncertaintytobeapproachedinafamiliarchoice-theoreticframework.Theapproachisespeciallyusefulforlookingatissuesthatariseintheeconomicsofinformation.•Informationisvaluablebecauseitpermitsindividualstomakebetterdecisionsinuncertainsituations.Informa-tioncanbemostvaluablewhenindividualshavesomeflexibilityintheirdecisionmaking.226Part2ChoiceandDemand
a.Listthepossibleoutcomesofeachstrategyandtheprobabilitiesoftheseoutcomes.Showthat,onaverage,6eggswillremainunbrokenafterthetriphomeundereitherstrategy.b.Developagraphtoshowtheutilityobtainableundereachstrategy.Whichstrategywillbepreferable?c.Couldutilitybeimprovedfurtherbytakingmorethantwotrips?Howwouldthispossibilitybeaffectedifadditionaltripswerecostly?7.4Supposethereisa50–50chancethatarisk-averseindividualwithacurrentwealthof$20,000willcontractadebilitatingdiseaseandsufferalossof$10,000.a.Calculatethecostofactuariallyfairinsuranceinthissituationanduseautility-of-wealthgraph(suchasshowninFigure7.1)toshowthattheindividualwillpreferfairinsuranceagainstthislosstoacceptingthegambleuninsured.b.Supposetwotypesofinsurancepolicieswereavailable:(1)afairpolicycoveringthecompleteloss;and(2)afairpolicycoveringonlyhalfofanylossincurred.Calculatethecostofthesecondtypeofpolicyandshowthattheindividualwillgenerallyregarditasinferiortothefirst.7.5Ms.Foggisplanninganaround-the-worldtriponwhichsheplanstospend$10,000.TheutilityfromthetripisafunctionofhowmuchsheactuallyspendsonitðYÞ,givenbyUðYÞ¼lnY.a.Ifthereisa25percentprobabilitythatMs.Foggwilllose$1,000ofhercashonthetrip,whatisthetrip’sexpectedutility?b.SupposethatMs.Foggcanbuyinsuranceagainstlosingthe$1,000(say,bypurchasingtraveler’schecks)atan“actuariallyfair”premiumof$250.Showthatherexpectedutilityishigherifshepurchasesthisinsurancethanifshefacesthechanceoflosingthe$1,000withoutinsurance.c.WhatisthemaximumamountthatMs.Foggwouldbewillingtopaytoinsureher$1,000?7.6Indecidingtoparkinanillegalplace,anyindividualknowsthattheprobabilityofgettingaticketispandthatthefineforreceivingtheticketisf.Supposethatallindividualsareriskaverse(thatis,U00ðWÞ<0,whereWistheindividual’swealth).Willaproportionalincreaseintheprobabilityofbeingcaughtoraproportionalincreaseinthefinebeamoreeffectivedeterrenttoillegalparking?Hint:UsetheTaylorseriesapproximationUðWfÞ¼UðWÞfU0ðWÞþðf2=2ÞU00ðWÞ.7.7Afarmerbelievesthereisa50–50chancethatthenextgrowingseasonwillbeabnormallyrainy.Hisexpectedutilityfunctionhastheformexpectedutility¼12lnYNRþ12lnYR,whereYNRandYRrepresentthefarmer’sincomeinthestatesof“normalrain”and“rainy,”respectively.Chapter7UncertaintyandInformation227
a.Supposethefarmermustchoosebetweentwocropsthatpromisethefollowingincomeprospects:Whichofthecropswillheplant?b.Supposethefarmercanplanthalfhisfieldwitheachcrop.Wouldhechoosetodoso?Explainyourresult.c.Whatmixofwheatandcornwouldprovidemaximumexpectedutilitytothisfarmer?d.Wouldwheatcropinsurance—whichisavailabletofarmerswhogrowonlywheatandwhichcosts$4,000andpaysoff$8,000intheeventofarainygrowingseason—causethisfarmertochangewhatheplants?7.8InEquation7.30weshowedthattheamountanindividualiswillingtopaytoavoidafairgamble(h)isgivenbyp¼0:5Eðh2ÞrðWÞ,whererðWÞisthemeasureofabsoluteriskaversionatthisperson’sinitiallevelofwealth.Inthisproblemwelookatthesizeofthispaymentasafunctionofthesizeoftheriskfacedandthisperson’slevelofwealth.a.Considerafairgamble(v)ofwinningorlosing$1.Forthisgamble,whatisEðv2Þ?b.Nowconsidervaryingthegambleinpart(a)bymultiplyingeachprizebyapositiveconstantk.Leth¼kv.WhatisthevalueofEðh2Þ?c.SupposethispersonhasalogarithmicutilityfunctionUðWÞ¼lnW.WhatisageneralexpressionforrðWÞ?d.Computetheriskpremium(p)fork¼0:5,1,and2andforW¼10and100.Whatdoyouconcludebycomparingthesixvalues?AnalyticalProblems7.9HARAUtilityTheCARAandCRRAutilityfunctionsarebothmembersofamoregeneralclassofutilityfunctionscalledharmonicabsoluteriskaversion(HARA)functions.ThegeneralformforthisfunctionisUðWÞ¼θðμþW=γÞ1γ,wherethevariousparametersobeythefollowingrestrictions:•γ1,•μþW=γ>0,•θ½ð1γÞ=γ>0.Thereasonsforthefirsttworestrictionsareobvious;thethirdisrequiredsothatU0>0.a.CalculaterðWÞforthisfunction.ShowthatthereciprocalofthisexpressionislinearinW.Thisistheoriginoftheterm“harmonic”inthefunction’sname.b.Showthat,whenμ¼0andθ¼½ð1γÞ=γγ1,thisfunctionreducestotheCRRAfunctiongiveninChapter7(seefootnote17).c.Useyourresultfrompart(a)toshowthatifγ!∞thenrðWÞisaconstantforthisfunction.d.Lettheconstantfoundinpart(c)berepresentedbyA.ShowthattheimpliedformfortheutilityfunctioninthiscaseistheCARAfunctiongiveninEquation7.35.e.Finally,showthataquadraticutilityfunctioncanbegeneratedfromtheHARAfunctionsimplybysettingγ¼1.f.DespitetheseeminggeneralityoftheHARAfunction,itstillexhibitsseverallimitationsforthestudyofbehaviorinuncertainsituations.Describesomeoftheseshortcomings.CropYNRYRWheat$28,000$10,000Corn19,00015,000228Part2ChoiceandDemand
7.10TheresolutionofuncertaintyInsomecasesindividualsmaycareaboutthedateatwhichtheuncertaintytheyfaceisresolved.Suppose,forexample,thatanindividualknowsthathisorherconsumptionwillbe10unitstoday(c1)butthattomorrow’sconsumption(c2)willbeeither10or2.5,dependingonwhetheracoincomesupheadsortails.Supposealsothattheindividual’sutilityfunctionhasthesimpleCobb-DouglasformUðc1,c2Þ¼ffiffiffiffiffiffiffiffiffic1c2p.a.Ifanindividualcaresonlyabouttheexpectedvalueofutility,willitmatterwhetherthecoinisflippedjustbeforeday1orjustbeforeday2?Explain.b.Moregenerally,supposethattheindividual’sexpectedutilitydependsonthetimingofthecoinflip.Specifically,assumethatexpectedutility¼E1½fE2½Uðc1,c2Þgα,whereE1representsexpectationstakenatthestartofday1,E2representsexpectationsatthestartofday2,andαrepresentsaparameterthatindicatestimingpreferences.Showthatifα¼1,theindividualisindifferentaboutwhenthecoinisflipped.c.Showthatifα¼2,theindividualwillpreferearlyresolutionoftheuncertainty—thatis,flippingthecoinatthestartofday1.d.Showthatifα¼0.5,theindividualwillpreferlaterresolutionoftheuncertainty(flippingatthestartofday2).e.Explainyourresultsintuitivelyandindicatetheirrelevanceforinformationtheory.Note:Thisproblemisanillustrationof“resolutionseeking”and“resolutionaverse”behavior;seeD.M.KrepsandE.L.Porteus,“TemporalResolutionofUncertaintyandDynamicChoiceTheory,”Econometrica(January1978):185–200.7.11MoreontheCRRAfunctionFortheconstantrelativeriskaversionutilityfunction(Equation7.42),weshowedthatthedegreeofriskaversionismeasuredbyð1RÞ.InChapter3weshowedthattheelasticityofsubstitutionforthesamefunctionisgivenby1=ð1RÞ.Hence,themeasuresarereciprocalsofeachother.Usingthisresult,discussthefollowingquestions.a.Whyisriskaversionrelatedtoanindividual’swillingnesstosubstitutewealthbetweenstatesoftheworld?Whatphenomenonisbeingcapturedbybothconcepts?b.HowwouldyouinterpretthepolarcasesR¼1andR¼∞inboththerisk-aversionandsubstitutionframeworks?c.Ariseinthepriceofcontingentclaimsin“bad”timesðPbÞwillinducesubstitutionandincomeeffectsintothedemandsforWgandWb.Iftheindividualhasafixedbudgettodevotetothesetwogoods,howwillchoicesamongthembeaffected?WhymightWgriseorfalldependingonthedegreeofriskaversionexhibitedbytheindividual?d.Supposethatempiricaldatasuggestanindividualrequiresanaveragereturnof0.5percentbeforebeingtemptedtoinvestinaninvestmentthathasa50–50chanceofgainingorlosing5percent.Thatis,thispersongetsthesameutilityfromW0asfromanevenbeton1.055W0and0.955W0.(1)WhatvalueofRisconsistentwiththisbehavior?(2)Howmuchaveragereturnwouldthispersonrequiretoaccepta50–50chanceofgainingorlosing10percent?Note:Thispartrequiressolvingnonlinearequations,soapproximatesolutionswillsuffice.Thecomparisonoftherisk-rewardtrade-offillustrateswhatiscalledthe“equitypremiumpuzzle”inthatriskyinvestmentsseemactuallytoearnmuchmorethanisconsistentwiththedegreeofriskaversionsuggestedbyotherdata.SeeN.R.Kocherlakota,“TheEquityPremium:It’sStillaPuzzle,”JournalofEconomicLiterature(March1996):42–71.Chapter7UncertaintyandInformation229
7.12GraphingriskyinvestmentsInvestmentinriskyassetscanbeexaminedinthestate-preferenceframeworkbyassumingthatWdollarsinvestedinanassetwithacertainreturnrwillyieldWð1þrÞinbothstatesoftheworld,whereasinvestmentinariskyassetwillyieldWð1þrgÞingoodtimesandWð1þrbÞinbadtimes(whererg>r>rb).a.Graphtheoutcomesfromthetwoinvestments.b.Showhowa“mixedportfolio”containingbothrisk-freeandriskyassetscouldbeillustratedinyourgraph.Howwouldyoushowthefractionofwealthinvestedintheriskyasset?c.Showhowindividuals’attitudestowardriskwilldeterminethemixofrisk-freeandriskyassetstheywillhold.Inwhatcasewouldapersonholdnoriskyassets?d.Ifanindividual’sutilitytakestheconstantrelativeriskaversionform(Equation7.42),explainwhythispersonwillnotchangethefractionofriskyassetsheldashisorherwealthincreases.267.13TaxingrisksassetsSupposetheassetreturnsinProblem7.12aresubjecttotaxation.a.Show,undertheconditionsofProblem7.12,whyaproportionaltaxonwealthwillnotaffectthefractionofwealthallocatedtoriskyassets.b.Supposethatonlythereturnsfromthesafeassetweresubjecttoaproportionalincometax.Howwouldthisaffectthefractionofwealthheldinriskyassets?Whichinvestorswouldbemostaffectedbysuchatax?c.Howwouldyouranswertopart(b)changeifallassetreturnsweresubjecttoaproportionalincometax?Note:Thisproblemasksyoutocomputethepre-taxallocationofwealththatwillresultinpost-taxutilitymaximization.7.14TheportfolioproblemwithaNormallydistributedriskyassetInExample7.3weshowedthatapersonwithaCARAutilityfunctionwhofacesaNormallydistributedriskwillhaveexpectedutilityoftheformE½UðWÞ¼μWðA=2Þσ2W,whereμWistheexpectedvalueofwealthandσ2Wisitsvariance.UsethisfacttosolvefortheoptimalportfolioallocationforapersonwithaCARAutilityfunctionwhomustinvestkofhisorherwealthinaNormallydistributedriskyassetwhoseexpectedreturnisμrandvarianceinreturnisσ2r(youranswershoulddependonA).Explainyourresultsintuitively.26ThisproblemandthenextaretakenfromJ.E.Stiglitz,“TheEffectsofIncome,Wealth,andCapitalGainsTaxationinRiskTaking,”QuarterlyJournalofEconomics(May1969):263–83.230Part2ChoiceandDemand
SUGGESTIONSFORFURTHERREADINGArrow,K.J.“TheRoleofSecuritiesintheOptimalAllocationofRiskBearing.”ReviewofEconomicStudies31(1963):91–96.Introducesthestate-preferenceconceptandinterpretssecuritiesasclaimsoncontingentcommodities.———.“UncertaintyandtheWelfareEconomicsofMedicalCare.”AmericanEconomicReview53(1963):941–73.Excellentdiscussionofthewelfareimplicationsofinsurance.Hasaclear,concise,mathematicalappendix.ShouldbereadinconjunctionwithPauly’sarticleonmoralhazard(seeChapter18).Bernoulli,D.“ExpositionofaNewTheoryontheMeasurementofRisk.”Econometrica22(1954):23–36.ReprintoftheclassicanalysisoftheSt.Petersburgparadox.Dixit,A.K.,andR.S.Pindyck.InvestmentunderUncer-tainty.Princeton:PrincetonUniversityPress,1994.Focusesmainlyontheinvestmentdecisionbyfirmsbuthasagoodcoverageofoptionconcepts.Friedman,M.,andL.J.Savage.“TheUtilityAnalysisofChoice.”JournalofPoliticalEconomy56(1948):279–304.Analyzeswhyindividualsmaybothgambleandbuyinsurance.Veryreadable.Gollier,Christian.TheEconomicsofRiskandTime.Cam-bridge,MA:MITPress,2001.Containsacompletetreatmentofmanyoftheissuesdiscussedinthischapter.Especiallygoodontherelationshipbetweenallocationunderuncertaintyandallocationovertime.Mas-Colell,Andreu,MichaelD.Whinston,andJerryR.Green.MicroeconomicTheory.NewYork:OxfordUniversityPress,1995,chap.6.Providesagoodsummaryofthefoundationsofexpectedutilitytheory.Alsoexaminesthe“stateindependence”assumptionindetailandshowsthatsomenotionsofriskaversioncarryoverintocasesofstatedependence.Pratt,J.W.“RiskAversionintheSmallandintheLarge.”Econometrica32(1964):122–36.Theoreticaldevelopmentofrisk-aversionmeasures.Fairlytechnicaltreatmentbutreadable.Rothschild,M.,andJ.E.Stiglitz.“IncreasingRisk:1.ADefinition.”JournalofEconomicTheory2(1970):225–43.Developsaneconomicdefinitionofwhatitmeansforonegambletobe“riskier”thananother.AsequelarticleintheJournalofEconomicTheoryprovideseconomicillustrations.Silberberg,E.,andW.Suen.TheStructureofEconomics:AMathematicalAnalysis,3rded.Boston:Irwin/McGraw-Hill,2001.Chapter13providesaniceintroductiontotherelationshipbetweenstatisticalconceptsandexpectedutilitymaximization.AlsoshowsindetailtheintegrationmentionedinExample7.3.Chapter7UncertaintyandInformation231
EXTENSIONSPortfoliosofManyRiskyAssetsTheportfolioproblemwestudiedinChapter7lookedataninvestor’sdecisiontoinvestaportionofhisorherwealthinasingleriskyasset.IntheseExtensionswewillseehowthismodelcanbegeneralizedtoconsiderportfolioswithmanysuchassets.Throughoutourdis-cussionwewillassumethattherearenriskyassets.Thereturnoneachassetisarandomvariabledenotedbyriði¼1,nÞ.Theexpectedvaluesandvariancesoftheseassets’returnsaredenotedbyEðriÞ¼μiandVarðriÞ¼σ2i,respectively.AninvestorwhoinvestsaportionofhisorherwealthinaportfoliooftheseassetswillobtainarandomreturnðrPÞgivenbyrP¼Xni¼1αiri,(i)whereαið0ÞisthefractionoftheriskyportfolioheldinassetiandwherePni¼1αi¼1.Inthissit-uation,theexpectedreturnonthisportfoliowillbeEðrPÞ¼μP¼Xni¼1αiμi.(ii)Ifthereturnsofeachassetareindependent,thenthevarianceoftheportfolio’sreturnwillbeVarðrPÞ¼σ2P¼Xni¼1α2iσ2i.(iii)Ifthereturnsarenotindependent,Equationiiiwouldhavetobemodifiedtotakecovariancesamongthereturnsintoaccount.Usingthisgeneralnotation,wenowproceedtolookatsomeaspectsofthisportfolioallocationproblem.E7.1DiversificationwithtworiskyassetsEquationiiiprovidesthebasicrationaleforholdingmanyassetsinaportfolio:sothatdiversificationcanreducerisk.Suppose,forexample,thatthereareonlytwoindependentassetsandthattheexpectedreturnsandvariancesofthosereturnsforeachoftheassetsareidentical.Thatis,assumeμ1¼μ2andσ21¼σ22.ApersonwhoinvestshisorherriskyportfolioinonlyoneoftheseseeminglyidenticalassetswillobtainμP¼μ1¼μ2andσ2P¼σ21¼σ22.Bymixingtheassets,however,thisinvestorcandobetterinthesensethatheorshecangetthesameexpectedyieldwithlowervariance.Noticethat,nomatterhowthispersoninvests,theexpectedreturnontheportfoliowillbethesame:μP¼α1μ1þð1α1Þμ2¼μ1¼μ2.(iv)Butthevariancewilldependontheallocationbe-tweenthetwoassets:σ2P¼α21σ21þð1α1Þ2σ22¼ð12α1þ2α21Þσ21.(v)Choosingα1tominimizethisexpressionyieldsα1¼0:5andσ2P¼0:5σ21.(vi)Hence,holdinghalfofone’sportfolioineachassetyieldsthesameexpectedreturnasholdingonlyoneasset,butitpromisesavarianceofreturnthatisonlyhalfaslarge.AsweshowedearlierinChapter7,thisistheprimarybenefitofdiversification.E7.2EfficientportfoliosWithmanyassets,theoptimaldiversificationproblemistochooseassetweightings(theα’s)soastomini-mizethevariance(orstandarddeviation)oftheport-folioforeachpotentialexpectedreturn.Thesolutiontothisproblemyieldsan“efficiencyfrontier”forriskyassetportfoliossuchasthatrepresentedbythelineEEinFigureE7.1.Portfoliosthatliebelowthisfrontierareinferiortothoseonthefrontierbecausetheyofferlowerexpectedreturnsforanydegreeofrisk.Portfolioreturnsabovethefrontierareunattainable.Sharpe(1970)discussesthemathematicsassociatedwithcon-structingtheEEfrontier.MutualfundsThenotionofportfolioefficiencyhasbeenwidelyappliedtothestudyofmutualfunds.Ingeneral,mu-tualfundsareagoodanswertosmallinvestors’diver-sificationneeds.Becausesuchfundspoolthefundsofmanyindividuals,theyareabletoachieveeconomiesofscaleintransactionsandmanagementcosts.Thispermitsfundownerstoshareinthefortunesofamuchwidervarietyofequitiesthanwouldbepossibleifeachactedalone.Butmutualfundmanagershaveincen-tivesoftheirown,sotheportfoliostheyholdmaynotalwaysbeperfectrepresentationsoftheriskattitudesoftheirclients.Forexample,ScharfsteinandStein(1990)developamodelthatshowswhymutualfund232Part2ChoiceandDemand
managershaveincentivesto“followtheherd”intheirinvestmentpicks.Otherstudies,suchastheclassicinves-tigationbyJensen(1968),findthatmutualfundman-agersareseldomabletoattainextrareturnslargeenoughtooffsettheexpensestheychargeinvestors.Inrecentyearsthishasledmanymutualfundbuyerstofavor“index”fundsthatseeksimplytoduplicatethemarketaverage(asrepresented,say,bytheStan-dardandPoor’s500stockindex).Suchfundshaveverylowexpensesandthereforepermitinvestorstoachievediversificationatminimalcost.E7.3PortfolioseparationIfthereexistsarisk-freeassetwithexpectedreturnμfandσf¼0,thenoptimalportfolioswillconsistofmixturesofthisassetwithriskyones.Allsuchportfo-lioswillliealongthelinePPinFigure7.1,becausethisshowsthemaximumreturnattainableforeachvalueofσforvariousportfolioallocations.Theseallocationswillcontainonlyonespecificsetofriskyassets:thesetrepresentedbypointM.Inequilibriumthiswillbethe“marketportfolio”consistingofallcapitalassetsheldinproportiontotheirmarketvaluations.ThismarketportfoliowillprovideanexpectedreturnofμMandastandarddeviationofthatreturnofσM.TheequationforthelinePPthatrepresentsanymixedportfolioisgivenbythelinearequationμP¼μfþμMμfσM⋅σP.(vii)ThisshowsthatthemarketlinePPpermitsindivid-ualinvestorsto“purchase”returnsinexcessoftherisk-freereturnðμMμfÞbytakingonproportionallymoreriskðσP=σMÞ.ForchoicesonPPtotheleftofthemarketpointM,σP=σM<1andμf<μP<μM.High-riskpointstotherightofM—whichcanbeobtainedbyborrowingtoproducealeveragedport-folio—willhaveσP=σM>1andwillpromiseanexpectedreturninexcessofwhatisprovidedbythemarketportfolioðμP>μMÞ.Tobin(1958)wasoneofthefirsteconomiststorecognizetherolethatrisk-freeassetsplayinidentifyingthemarketportfolioandinsettingthetermsonwhichinvestorscanobtainreturnsaboverisk-freelevels.E7.4IndividualchoicesFigureE7.2illustratestheportfoliochoicesofvariousinvestorsfacingtheoptionsofferedbythelinePP.FIGUREE7.1EfficientPortfoliosThefrontierEErepresentsoptimalmixturesofriskyassetsthatminimizethestandarddeviationoftheportfolio,σP,foreachexpectedreturn,μP.Arisk-freeassetwithreturnμfoffersinvestorstheopportunitytoholdmixedportfoliosalongPPthatmixthisrisk-freeassetwiththemarketportfolio,M.EEPPMPMMPfChapter7UncertaintyandInformation233
Thisfigureillustratesthetypeofportfoliochoicemodelpreviouslydescribedinthischapter.Individualswithlowtoleranceforrisk(I)willoptforportfoliosthatareheavilyweightedtowardtherisk-freeasset.Investorswillingtoassumeamodestdegreeofrisk(II)willoptforportfoliosclosetothemarketportfo-lio.High-riskinvestors(III)mayoptforleveragedportfolios.Noticethatallinvestorsfacethesame“price”ofriskðμMμfÞwiththeirexpectedreturnsbeingdeterminedbyhowmuchrelativeriskðσP=σMÞtheyarewillingtoincur.Noticealsothattheriskas-sociatedwithaninvestor’sportfoliodependsonlyonthefractionoftheportfolioinvestedinthemarketportfolioðαÞ,sinceσ2P¼α2σ2Mþð1αÞ2⋅0.Hence,σP=σM¼αandsotheinvestor’schoiceofportfolioisequivalenttohisorherchoiceofrisk.E7.5CapitalassetpricingmodelAlthoughtheanalysisofE7.4showshowaportfoliothatmixesarisk-freeassetwiththemarketportfoliowillbepriced,itdoesnotdescribetherisk-returntrade-offforasingleasset.Because(assumingtransactionsarecostless)aninvestorcanalwaysavoidriskunrelatedtotheoverallmarketbychoosingtodiversifywitha“marketportfolio,”such“unsystematic”riskwillnotwarrantanyexcessreturn.Anassetwill,however,earnanexcessreturntotheextentthatitcontributestooverallmarketrisk.Anassetthatdoesnotyieldsuchextrareturnswouldnotbeheldinthemarketportfolio,soitwouldnotbeheldatall.Thisisthefundamentalinsightofthecapitalassetpricingmodel(CAPM).Toexaminetheseresultsformally,consideraport-foliothatcombinesasmallamountðαÞofanassetwitharandomreturnofxwiththemarketportfolio(whichhasarandomreturnofM).Thereturnonthisport-folio(z)wouldbegivenbyz¼αxþð1αÞM.(viii)Theexpectedreturnisμz¼αμxþð1αÞμM(ix)FIGUREE7.2InvestorBehaviorandRiskAversionGiventhemarketoptionsPP,investorscanchoosehowmuchrisktheywishtoassume.Veryrisk-averseinvestors(UI)willholdmainlyrisk-freeassets,whereasrisktakers(UIII)willoptforleveragedportfolios.MPUIIUIIIUIPPfP234Part2ChoiceandDemand
withvarianceσ2z¼α2σ2xþð1αÞ2σ2Mþ2αð1αÞσx,M,(x)whereσx,Misthecovariancebetweenthereturnonxandthereturnonthemarket.Butourpreviousanalysisshowsμz¼μfþðμMμfÞ⋅σzσM.(xi)SettingEquationixequaltoxianddifferentiatingwithrespecttoαyields∂μz∂α¼μxμM¼μMμfσM∂σz∂α.(xii)Bycalculating∂σz=∂αfromEquationxandtakingthelimitasαapproacheszero,wegetμxμM¼μMμfσMσx,Mσ2MσM !,(xiii)or,rearrangingterms,μx¼μfþðμMμfÞ⋅σx,Mσ2M.(xiv)Again,riskhasarewardofμMμf,butnowthequantityofriskismeasuredbyσx,M=σ2M.Thisratioofthecovariancebetweenthereturnxandthemarkettothevarianceofthemarketreturnisreferredtoasthebetacoefficientfortheasset.Estimatedbetaco-efficientsforfinancialassetsarereportedinmanypublications.StudiesoftheCAPMThisversionofthecapitalassetpricingmodelcarriesstrongimplicationsaboutthedeterminantsofanyasset’sexpectedrateofreturn.Becauseofthissimplic-ity,themodelhasbeensubjecttoalargenumberofempiricaltests.Ingeneralthesefindthatthemodel’smeasureofsystemicrisk(beta)isindeedcorrelatedwithexpectedreturns,whilesimplermeasuresofrisk(forexample,thestandarddeviationofpastreturns)arenot.PerhapsthemostinfluentialearlyempiricaltestthatreachedsuchaconclusionwasFamaandMacBeth(1973).ButtheCAPMitselfexplainsonlyasmallfractionofdifferencesinthereturnsofvariousassets.And,contrarytotheCAPM,anumberofauthorshavefoundthatmanyothereconomicfactorssignificantlyaffectexpectedreturns.Indeed,apromi-nentchallengetotheCAPMcomesfromoneofitsoriginalfounders—seeFamaandFrench(1992).ReferencesFama,E.F.,andK.R.French.“TheCrossSectionofExpectedStockReturns.”JournalofFinance47(1992):427–66.Fama,E.F.,andJ.MacBeth.“Risk,Return,andEquilib-rium.”JournalofPoliticalEconomy8(1973):607–36.Jensen,M.“ThePerformanceofMutualFundsinthePeriod1945–1964.”JournalofFinance(May1968):386–416.Scharfstein,D.S.,andJ.Stein.“HerdBehaviorandInvestment.”AmericanEconomicReview(June1990):465–89.Sharpe,W.F.PortfolioTheoryandCapitalMarkets.NewYork:McGraw-Hill,1970.Tobin,J.“LiquidityPreferenceasBehaviorTowardsRisk.”ReviewofEconomicStudies(February1958):65–86.Chapter7UncertaintyandInformation235
CHAPTER8StrategyandGameTheoryThischapterprovidesanintroductiontononcooperativegametheory,atoolusedtounderstandthestrategicinteractionsamongtwoormoreagents.Therangeofapplicationsofgametheoryhasbeengrowingconstantly,includingallareasofeconomics(fromlaboreconomicstomacroeconomics)andotherfieldssuchaspoliticalscienceandbiology.Gametheoryisparticularlyusefulinunderstandingtheinteractionbetweenfirmsinanoligopoly,sotheconceptslearnedherewillbeusedextensivelyinChapter15.WebeginwiththecentralconceptofNashequilibriumandstudyitsapplicationinsimplegames.WethengoontostudyrefinementsofNashequilibriumthatareusedingameswithmorecomplicatedtimingandinformationstructures.BASICCONCEPTSSofarinPartIIofthistext,wehavestudiedindividualdecisionsmadeinisolation.Inthischapterwestudydecisionmakinginamorecomplicated,strategicsetting.Inastrategicsetting,apersonmaynolongerhaveanobviouschoicethatisbestforhimorher.Whatisbestforonedecisionmakermaydependonwhattheotherisdoingandviceversa.Forexample,considerthestrategicinteractionbetweendriversandthepolice.Whetherdriversprefertospeedmaydependonwhetherthepolicesetupspeedtraps.Whetherthepolicefindspeedtrapsvaluabledependsonhowmuchdriversspeed.Thisconfusingcircularitywouldseemtomakeitdifficulttomakemuchheadwayinanalyzingstrategicbehavior.Infact,thetoolsofgametheorywillallowustopushtheanalysisnearlyasfar,forexample,asouranalysisofconsumerutilitymaximizationinChapter4.Therearetwomajortasksinvolvedwhenusinggametheorytoanalyzeaneconomicsituation.Thefirstistodistillthesituationintoasimplegame.Becausetheanalysisinvolvedinstrategicsettingsquicklygrowsmorecomplicatedthaninsimpledecisionproblems,itisimportanttosimplifythesettingasmuchaspossiblebyretainingonlyafewessentialelements.Thereisacertainarttodistillinggamesfromsituationsthatishardtoteach.Theexamplesinthetextandproblemsinthischaptercanserveasmodelsthatmayhelpinapproachingnewsituations.Thesecondtaskisto“solve”thegivengame,whichresultsinapredictionaboutwhatwillhappen.Tosolveagame,onetakesanequilibriumconcept(Nashequilibrium,forex-ample)andrunsthroughthecalculationsrequiredtoapplyittothegivengame.Muchofthechapterwillbedevotedtolearningthemostwidelyusedequilibriumconcepts(includingNashequilibrium)andtopracticingthecalculationsnecessarytoapplythemtoparticulargames.Agameisanabstractmodelofastrategicsituation.Eventhemostbasicgameshavethreeessentialelements:players,strategies,andpayoffs.Incomplicatedsettings,itissometimesalsonecessarytospecifyadditionalelementssuchasthesequenceofmovesandtheinformationthatplayershavewhentheymove(whoknowswhatwhen)todescribethegamefully.236
PlayersEachdecisionmakerinagameiscalledaplayer.Theseplayersmaybeindividuals(asinpokergames),firms(asinmarketswithfewfirms),orentirenations(asinmilitaryconflicts).Aplayerischaracterizedashavingtheabilitytochoosefromamongasetofpossibleactions.Usually,thenumberofplayersisfixedthroughoutthe“play”ofthegame.Gamesaresometimescharacterizedbythenumberofplayersinvolved(two-player,three-player,orn-playergames).Asdoesmuchoftheeconomicliterature,thischapteroftenfocusesontwo-playergamesbecausethisisthesimpleststrategicsetting.Wewilllabeltheplayerswithnumbers,soinatwo-playergamewewillhaveplayers1and2.Inann-playergamewewillhaveplayers1,2,…,n,withthegenericplayerlabeledi.StrategiesEachcourseofactionopentoaplayerduringthegameiscalledastrategy.Dependingonthegamebeingexamined,astrategymaybeasimpleaction(driveoverthespeedlimitornot)oracomplexplanofactionthatmaybecontingentonearlierplayinthegame(say,speedingonlyifthedriverhasobservedspeedtrapslessthanaquarterofthetimeinpastdrives).Manyaspectsofgametheorycanbeillustratedingamesinwhichplayerschoosebetweenjusttwopossibleactions.LetS1denotethesetofstrategiesopentoplayer1,S2thesetopentoplayer2,and(moregenerally)Sithesetopentoplayeri.Lets12S1beaparticularstrategychosenbyplayer1fromthesetofpossibilities,s22S2theparticularstrategychosenbyplayer2,andsi2Siforplayeri.Astrategyprofilewillrefertoalistingofparticularstrategieschosenbyeachofagroupofplayers.PayoffsThefinalreturnstotheplayersattheconclusionofagamearecalledpayoffs.Payoffsaremeasuredinlevelsofutilityobtainedbytheplayers.Forsimplicity,monetarypayoffs(say,profitsforfirms)areoftenused.Moregenerally,payoffscanincorporatenonmonetaryout-comessuchasprestige,emotion,riskpreferences,andsoforth.Playersareassumedtopreferhigherpayoffsthanlowerpayoffs.Inatwo-playergame,u1ðs1,s2Þdenotesplayer1’spayoffgiventhatheorshechoosess1andtheotherplayerchoosess2andsimilarlyu2ðs2,s1Þdenotesplayer2’spayoff.Thefactplayer1’spayoffmaydependon2’sstrategy(andviceversa)iswherethestrategicinterdependenceshowsup.Inann-playergame,wecanwritethepayoffofagenericplayeriasuiðsi,siÞ,whichdependsonplayeri’sownstrategysiandtheprofilesi¼ðs1,…,si1,siþ1,…,snÞofthestrategiesofallplayersotherthani.PRISONERS’DILEMMAThePrisoners’Dilemma,introducedbyA.W.Tuckerinthe1940s,isoneofthemostfamousgamesstudiedingametheoryandwillservehereasaniceexampletoillustrateallthenotationjustintroduced.Thetitlestemsfromthefollowingsituation.Twosuspectsarear-restedforacrime.Thedistrictattorneyhaslittleevidenceinthecaseandiseagertoextractaconfession.Sheseparatesthesuspectsandtellseach:“Ifyoufinkonyourcompanionbutyourcompaniondoesn’tfinkonyou,Icanpromiseyouareduced(one-year)sentence,whereasyourcompanionwillgetfouryears.Ifyoubothfinkoneachother,youwilleachgetathree-yearsentence.”Eachsuspectalsoknowsthatifneitherofthemfinksthenthelackofevidencewillresultinbeingtriedforalessercrimeforwhichthepunishmentisatwo-yearsentence.Chapter8StrategyandGameTheory237
Boileddowntoitsessence,thePrisoners’Dilemmahastwostrategicplayers,thesuspects,labeled1and2.(Thereisalsoadistrictattorney,butsinceheractionshavealreadybeenfullyspecified,thereisnoreasontocomplicatethegameandincludeherinthespecification.)Eachplayerhastwopossiblestrategiesopentohim:finkorremainsilent.WethereforewritetheirstrategysetsasS1¼S2ffink,silentg.Toavoidnegativenumberswewillspecifypayoffsastheyearsoffreedomoverthenextfouryears.Forexample,ifsuspect1finksand2doesnot,suspect1willenjoythreeyearsoffreedomand2none,thatis,u1ðfink,silentÞ¼3andu2ðsilent,finkÞ¼0.ExtensiveformThereare22¼4combinationsofstrategiesandtwopayoffstospecifyforeachcombi-nation.Soinsteadoflistingallthepayoffs,itwillbeclearertoorganizetheminagametreeoramatrix.Thegametree,alsocalledtheextensiveform,isshowninFigure8.1.Theactionproceedsfromlefttoright.Eachnode(shownasadotonthetree)representsadecisionpointfortheplayerindicatedthere.Thefirstmoveinthisgamebelongstoplayer1;hemustchoosewhethertofinkorbesilent.Thenplayer2makeshisdecision.Thedottedovaldrawnaroundthenodesatwhichplayer2movesindicatesthatthetwonodesareinthesameinformationset,thatis,player2doesnotknowwhatplayer1haschosenwhen2moves.Weputthetwonodesinthesameinformationsetbecausethedistrictattorneyapproacheseachsuspectseparatelyanddoesnotrevealwhattheotherhaschosen.Wewilllaterlookatgamesinwhichthesecondmoverdoeshaveinformationaboutthefirstmover’schoiceandsothetwonodesareinseparateinformationsets.Payoffsaregivenattheendofthetree.Theconventionisforplayer1’spayofftobelistedfirst,thenplayer2’s.FIGURE8.1ExtensiveFormforthePrisoners’DilemmaInthisgame,player1choosestofinkorbesilent,andplayer2hasthesamechoice.Theovalsurrounding2’snodesindicatesthattheysharethesame(lackof)information:2doesnotknowwhatstrategy1haschosenbecausethedistrictattorneyapproacheseachplayerinsecret.Payoffsarelistedattheright.Fink122Finku1=1, u2=1u1=3, u2=0u1=0,u2=3u1=2, u2=2FinkSilentSilentSilent238Part2ChoiceandDemand
NormalformAlthoughtheextensiveforminFigure8.1offersausefulvisualpresentationofthecompletestructureofthegame,sometimesitismoreconvenienttorepresentgamesinmatrixform,calledthenormalformofthegame;thisisshownforthePrisoners’DilemmainTable8.1.Player1istherowplayer,and2isthecolumnplayer.Eachentryinthematrixliststhepayoffsfirstforplayer1andthenfor2.ThinkingstrategicallyaboutthePrisoners’DilemmaAlthoughwehavenotdiscussedhowtosolvegamesyet,itisworththinkingaboutwhatwemightpredictwillhappeninthePrisoners’Dilemma.StudyingTable8.1,onfirstthoughtonemightpredictthatbothwillbesilent.Thisgivesthemosttotalyearsoffreedomforboth(four)comparedtoanyotheroutcome.Thinkingabitdeeper,thismaynotbethebestpredictioninthegame.Imagineourselvesinplayer1’spositionforamoment.Wedon’tknowwhatplayer2willdoyetsincewehaven’tsolvedoutthegame,solet’sinvestigateeachpossibility.Suppose2chosetofink.Byfinkingourselveswewouldearnoneyearoffreedomversusnoneifweremainedsilent,sofinkingisbetterforus.Suppose2chosetoremainsilent.Finkingisstillbetterforusthanremainingsilentsincewegetthreeratherthantwoyearsoffreedom.Regardlessofwhattheotherplayerdoes,finkingisbetterforusthanbeingsilentsinceitresultsinanextrayearoffreedom.Sinceplayersaresymmetric,thesamereasoningholdsifweimagineourselvesinplayer2’sposition.Therefore,thebestpredictioninthePrisoners’Dilemmaisthatbothwillfink.Whenweformallyintroducethemainsolutionconcept—Nashequilibrium—wewillindeedfindthatbothfinkingisaNashequilibrium.Thepredictionhasaparadoxicalproperty:bybothfinking,thesuspectsonlyenjoyoneyearoffreedom,butiftheywerebothsilenttheywouldbothdobetter,enjoyingtwoyearsoffreedom.Theparadoxshouldnotbetakentoimplythatplayersarestupidorthatourpredictioniswrong.Rather,itrevealsacentralinsightfromgametheorythatpittingplayersagainsteachotherinstrategicsituationssometimesleadstooutcomesthatareinefficientfortheplayers.(Whenwesaytheoutcomeisinefficient,wearefocusingjustonthesuspects’utilities;ifthefocuswereshiftedtosocietyatlarge,thenbothfinkingmightbequiteagoodoutcomeforthecriminaljusticesystem—presumablythemotivationbehindthedistrictattorney’soffer.)Thesuspectsmighttrytoavoidtheextraprisontimebycomingtoanagreementbeforehandtoremainsilent,perhapsreinforcedbythreatstoretaliateafterwardsifoneortheotherfinks.IntroducingagreementsandthreatsleadstoagamethatdiffersfromthebasicPrisoners’Dilemma,agamethatshouldbeanalyzedonitsowntermsusingthetoolswewilldevelopshortly.SolvingthePrisoners’Dilemmawaseasybecausetherewereonlytwoplayersandtwostrategiesandbecausethestrategiccalculationsinvolvedwerefairlystraightforward.Itwouldbeusefultohaveasystematicwayofsolvingthisaswellasmorecomplicatedgames.Nashequilibriumprovidesuswithsuchasystematicsolution.TABLE8.1NormalFormforthePrisoners’DilemmaSuspect2FinkSilentSuspect1Finku1¼1,u2¼1u1¼3,u2¼0Silentu1¼0,u2¼3u1¼2,u2¼2Chapter8StrategyandGameTheory239
NASHEQUILIBRIUMIntheeconomictheoryofmarkets,theconceptofequilibriumisdevelopedtoindicateasituationinwhichbothsuppliersanddemandersarecontentwiththemarketoutcome.Giventheequilibriumpriceandquantity,nomarketparticipanthasanincentivetochangehisorherbehavior.Inthestrategicsettingofgametheory,wewilladoptarelatednotionofequilibrium,formalizedbyJohnNashinthe1950s,calledNashequilibrium.1Nashequilib-riuminvolvesstrategicchoicesthat,oncemade,providenoincentivesfortheplayerstoaltertheirbehaviorfurther.ANashequilibriumisastrategyforeachplayerthatisthebestchoiceforeachplayergiventheothers’equilibriumstrategies.Nashequilibriumcanbedefinedverysimplyintermsofbestresponses.Inann-playergame,strategysiisabestresponsetorivals’strategiessiifplayericannotobtainastrictlyhigherpayoffwithanyotherpossiblestrategys0i2Sigiventhatrivalsareplayingsi.DEFINITIONBestresponse.siisabestresponseforplayeritorivals’strategiessi,denotedsi2BRiðsiÞ,ifuiðsi,siÞuiðs0i,siÞforalls0i2Si.(8.1)Atechnicalityembeddedinthedefinitionisthattheremaybeasetofbestresponsesratherthanauniqueone;thatiswhyweusedthesetinclusionnotationsi2BRiðsiÞ.Theremaybeatieforthebestresponse,inwhichcasethesetBRiðsiÞwillcontainmorethanoneelement.Ifthereisn’tatie,thentherewillbeasinglebestresponsesiandwecansimplywritesi¼BRiðsiÞ.WecannowdefineaNashequilibriuminann-playergameasfollows.DEFINITIONNashequilibrium.ANashequilibriumisastrategyprofileðs1,s2,…,snÞsuchthat,foreachplayeri¼1,2,…,n,siisabestresponsetotheotherplayers’equilibriumstrategiessi.Thatis,si2BRiðsiÞ.Thesedefinitionsinvolvealotofnotation.Thenotationisabitsimplerinatwo-playergame.Inatwo-playergame,ðs1,s2ÞisaNashequilibriumifs1ands2aremutualbestresponsesagainsteachother:u1ðs1,s2Þu1ðs1,s2Þforalls12S1(8.2)andu2ðs2,s1Þu2ðs2,s1Þforalls22S2.(8.3)ANashequilibriumisstableinthat,evenifallplayersrevealedtheirstrategiestoeachother,noplayerwouldhaveanincentivetodeviatefromhisorherequilibriumstrategyandchoosesomethingelse.Nonequilibriumstrategiesarenotstableinthisway.IfanoutcomeisnotaNashequilibrium,thenatleastoneplayermustbenefitfromdeviating.HyperrationalplayerscouldbeexpectedtosolvetheinferenceproblemanddeducethatallwouldplayaNashequilibrium(especiallyifthereisauniqueNashequilibrium).Evenifplayersarenothyper-rational,overthelongrunwecanexpecttheirplaytoconvergetoaNashequilibriumastheyabandonstrategiesthatarenotmutualbestresponses.1JohnNash,“EquilibriumPointsinn-PersonGames,”ProceedingsoftheNationalAcademyofSciences36(1950):48–49.Nashistheprincipalfigureinthe2001filmABeautifulMind(seeProblem8.7foragame-theoryexamplefromthefilm)andco-winnerofthe1994NobelPrizeineconomics.240Part2ChoiceandDemand
Besidesthisstabilityproperty,anotherreasonNashequilibriumisusedsowidelyineconomicsisthatitisguaranteedtoexistforallgameswewillstudy(allowingformixedstrategies,tobedefinedbelow;Nashequilibriainpurestrategiesdonothavetoexist).Nashequilibriumhassomedrawbacks.TheremaybemultipleNashequilibria,makingithardtocomeupwithauniqueprediction.Also,thedefinitionofNashequilibriumleavesunclearhowaplayercanchooseabest-responsestrategybeforeknowinghowrivalswillplay.NashequilibriuminthePrisoners’DilemmaLet’sapplytheconceptsofbestresponseandNashequilibriumtotheexampleofthePrisoners’Dilemma.Oureducatedguesswasthatbothplayerswillendupfinking.WewillshowthatbothfinkingisaNashequilibriumofthegame.Todothis,weneedtoshowthatfinkingisabestresponsetotheotherplayers’finking.RefertothepayoffmatrixinTable8.1.Ifplayer2finks,weareinthefirstcolumnofthematrix.Ifplayer1alsofinks,hispayoffis1;ifheissilent,hispayoffis0.Sinceheearnsthemostfromfinkinggivenplayer2finks,finkingisplayer1’sbestresponsetoplayer2’sfinking.Sinceplayersaresymmetric,thesamelogicimpliesthatplayer2’sfinkingisabestresponsetoplayer1’sfinking.Therefore,bothfinkingisindeedaNashequilibrium.Wecanshowmore:thatbothfinkingistheonlyNashequilibrium.Todoso,weneedtoruleouttheotherthreeoutcomes.Considertheoutcomeinwhichplayer1finksand2issilent,abbreviated(fink,silent),theupperrightcornerofthematrix.ThisisnotaNashequilibrium.Giventhatplayer1finks,aswehavealreadysaid,player2’sbestresponseistofink,nottobesilent.Symmetrically,theoutcomeinwhichplayer1issilentand2finksinthelowerleftcornerofthematrixisnotaNashequilibrium.Thatleavestheoutcomeinwhichbotharesilent.Giventhatplayer2issilent,wefocusourattentiononthesecondcolumnofthematrix:thetworowsinthatcolumnshowthatplayer1’spayoffis2frombeingsilentand3fromfinking.Therefore,silentisnotabestresponsetofinkandsobothbeingsilentcannotbeaNashequilibrium.ToruleoutaNashequilibrium,itisenoughtofindjustoneplayerwhoisnotplayingabestresponseandsowouldwanttodeviatetosomeotherstrategy.Consideringtheoutcome(fink,silent),althoughplayer1wouldnotdeviatefromthisoutcome(heearns3,whichisthemostpossible),player2wouldprefertodeviatefromsilenttofink.Symmetrically,consider-ingtheoutcome(silent,fink),althoughplayer2doesnotwanttodeviate,player1preferstodeviatefromsilenttofink,sothisisnotaNashequilibrium.Consideringtheoutcome(silent,silent),bothplayersprefertodeviatetoanotherstrategy.HavingtwoplayersprefertodeviateismorethanenoughtoruleoutaNashequilibrium.Underliningbest-responsepayoffsAquickwaytofindtheNashequilibriaofagameistounderlinebest-responsepayoffsinthematrix.TheunderliningprocedureisdemonstratedforthePrisoners’DilemmainTable8.2.Thefirststepistounderlinethepayoffscorrespondingtoplayer1’sbestresponses.Player1’sTABLE8.2UnderliningProcedureinthePrisoners’DilemmaSuspect2FinkSilentSuspect1Finku1¼1,u2¼1u1¼3,u2¼0Silentu1¼0,u2¼3u1¼2,u2¼2Chapter8StrategyandGameTheory241
bestresponseistofinkifplayer2finks,soweunderlineu1¼1intheupperleftbox,andtofinkifplayer2issilent,soweunderlineu1¼3intheupperleftbox.Next,wemovetoun-derliningthepayoffscorrespondingtoplayer2’sbestresponses.Player2’sbestresponseistofinkifplayer1finks,soweunderlineu2¼1intheupperleftbox,andtofinkifplayer1issilent,soweunderlineu2¼3inthelowerleftbox.Nowthatthebest-responsepayoffshavebeenunderlined,welookforboxesinwhicheveryplayer’spayoffisunderlined.TheseboxescorrespondtoNashequilibria.(TheremaybeadditionalNashequilibriainvolvingmixedstrategies,definedlaterinthechapter.)InTable8.2,onlyintheupperleftboxarebothpayoffsunderlined,verifyingthat(fink,fink)—andnoneoftheotheroutcomes—isaNashequilibrium.DominantStrategies(Fink,fink)isaNashequilibriuminthePrisoners’Dilemmabecausefinkingisabestresponsetotheotherplayer’sfinking.Wecansaymore:finkingisthebestresponsetoalloftheotherplayer’sstrategies,finkandsilent.(Thiscanbeseen,amongotherways,fromtheunderliningprocedureshowninTable8.2:allplayer1’spayoffsareunderlinedintherowinwhichheplaysfink,andallplayer2’spayoffsareunderlinedinthecolumninwhichheplaysfink.)Astrategythatisabestresponsetoanystrategytheotherplayersmightchooseiscalledadominantstrategy.Playersdonotalwayshavedominantstrategies,butwhentheydothereisstrongreasontobelievetheywillplaythatway.Complicatedstrategicconsiderationsdonotmatterwhenaplayerhasadominantstrategybecausewhatisbestforthatplayerisindepen-dentofwhatothersaredoing.DEFINITIONDominantstrategy.Adominantstrategyisastrategysiforplayerithatisabestresponsetoallstrategyprofilesofotherplayers.Thatis,si2BRiðsiÞforallsi.NotethedifferencebetweenaNashequilibriumstrategyandadominantstrategy.AstrategythatispartofaNashequilibriumneedonlybeabestresponsetoonestrategyprofileofotherplayers—namely,theirequilibriumstrategies.AdominantstrategymustbeabestresponsenotjusttotheNashequilibriumstrategiesofotherplayersbuttoallthestrategiesofthoseplayers.Ifallplayersinagamehaveadominantstrategy,thenwesaythegamehasadominantstrategyequilibrium.AswellasbeingtheNashequilibriumofthePrisoners’Dilemma,(fink,fink)isadominantstrategyequilibrium.Asisclearfromthedefinitions,inanygamewithadominantstrategyequilibrium,thedominantstrategyequilibriumisaNashequilibrium.Problem8.4willshowthatwhenadominantstrategyexists,itistheuniqueNashequilibrium.BattleoftheSexesThefamousBattleoftheSexesgameisanotherexamplethatillustratestheconceptsofbestresponseandNashequilibrium.Thestorygoesthatawife(player1)andhusband(player2)wouldliketomeeteachotherforaneveningout.Theycangoeithertotheballetortoaboxingmatch.Bothprefertospendtimetogetherthanapart.Conditionalonbeingtogether,thewifepreferstogototheballetandthehusbandtoboxing.TheextensiveformofthegameispresentedinFigure8.2andthenormalforminTable8.3.Forbrevitywedispensewiththeu1andu2labelsonthepayoffsandsimplyre-emphasizetheconventionthatthefirstpayoffisplayer1’sandthesecondplayer2’s.Wewillworkwiththenormalform,examiningeachofthefourboxesinTable8.3anddeterminingwhichareNashequilibriaandwhicharenot.Startwiththeoutcomeinwhichbothplayerschooseballet,written(ballet,ballet),theupperleftcornerofthepayoffmatrix.Giventhatthehusbandplaysballet,thewife’sbestresponseistoplayballet(thisgivesherher242Part2ChoiceandDemand
highestpayoffinthematrixof2).Usingnotation,ballet¼BR1(ballet).[Wedon’tneedthefancyset-inclusionsymbolasin“ballet2BR1ðballetÞ”becausethehusbandhasonlyonebestresponsetothewife’schoosingballet.]Giventhatthewifeplaysballet,thehusband’sbestresponseistoplayballet.Ifhedeviatedtoboxingthenhewouldearn0ratherthan1,sincetheywouldendupnotcoordinating.Usingnotation,ballet¼BR2(ballet).So(ballet,ballet)isindeedaNashequilibrium.Symmetrically,(boxing,boxing)isaNashequilibrium.Considertheoutcome(ballet,boxing)intheupperleftcornerofthematrix.Giventhehusbandchoosesboxing,thewifeearns0fromchoosingballetbut1fromchoosingboxing,soballetisnotabestresponseforthewifetothehusband’schoosingboxing.Innotation,ballet62BR1ðboxingÞ.Hence(ballet,boxing)cannotbeaNashequilibrium.[Thehusband’sstrategyofboxingisnotabestresponsetothewife’splayingballeteither,soinfactbothplayerswouldprefertodeviatefrom(ballet,boxing),althoughweonlyneedtofindoneplayerwhowouldwanttodeviatetoruleoutanoutcomeasaNashequilibrium.]Symmetri-cally,(boxing,ballet)isnotaNashequilibrium,either.FIGURE8.2ExtensiveFormfortheBattleoftheSexesInthisgame,player1(wife)andplayer2(husband)choosetoattendtheballetoraboxingmatch.Theyprefertocoordinatebutdisagreeonwhicheventtocoordinate.Becausetheychoosesimulta-neously,thehusbanddoesnotknowthewife’schoicewhenhemoves,sohisdecisionnodesareconnectedinthesameinformationset.122BoxingBalletBoxing1, 20, 00, 02, 1BoxingBalletBalletTABLE8.3NormalFormfortheBattleoftheSexesPlayer2(Husband)BalletBoxingPlayer1ðWifeÞBallet2,10,0Boxing0,01,2Chapter8StrategyandGameTheory243
TheBattleoftheSexesisanexampleofagamewithmorethanoneNashequilibrium(infact,ithasthree—athirdinmixedstrategies,aswewillsee).Itishardtosaywhichofthetwowehavefoundsofarismoreplausible,sincetheyaresymmetric.Itisthereforedifficulttomakeafirmpredictioninthisgame.TheBattleoftheSexesisalsoanexampleofagamewithnodominantstrategies.Aplayerpreferstoplayballetiftheotherplaysballetandboxingiftheotherplaysboxing.Table8.4appliestheunderliningprocedure,usedtofindNashequilibriaquickly,totheBattleoftheSexes.TheprocedureverifiesthatthetwooutcomesinwhichtheplayerssucceedincoordinatingareNashequilibriaandthetwooutcomesinwhichtheydon’tcoordinatearenot.Examples8.1,8.2,and8.3provideadditionalpracticeinfindingNashequilibriainmorecomplicatedsettings(agamethathasmanytiesforbestresponsesinExample8.1,agamewiththreestrategiesforeachplayerinExample8.2,andagamewiththreeplayersinExample8.3).EXAMPLE8.1ThePrisoners’DilemmaReduxInthisvariationonthePrisoners’Dilemma,asuspectisconvictedandreceivesasentenceoffouryearsifheisfinkedonandgoesfreeifnot.Thedistrictattorneydoesnotrewardfinking.Table8.5presentsthenormalformforthegamebeforeandafterapplyingtheprocedureforunderliningbestresponses.Payoffsareagainrestatedintermsofyearsoffreedom.Tiesforbestresponsesarerife.Forexample,givenplayer2finks,player1’spayoffis0whetherhefinksorissilent.Sothereisatiefor1’sbestresponseto2’sfinking.Thisisanexampleofthesetofbestresponsescontainingmorethanoneelement:BR1ðfinkÞ¼ffink,silentg.TABLE8.5ThePrisoners’DilemmaRedux(a)NormalformSuspect2FinkSilentSuspect1Fink0,01,0Silent0,11,1(b)UnderliningprocedureSuspect2FinkSilentSuspect1Fink0,01,0Silent0,11,1TABLE8.4UnderliningProcedureintheBattleoftheSexesPlayer2(Husband)BalletBoxingPlayer1ðWifeÞBallet2,10,0Boxing0,01,2244Part2ChoiceandDemand
TheunderliningprocedureshowsthatthereisaNashequilibriumineachofthefourboxes.Giventhatsuspectsreceivenopersonalrewardorpenaltyforfinking,theyarebothindifferentbetweenfinkingandbeingsilent;thusanyoutcomecanbeaNashequilibrium.QUERY:Doesanyplayerhaveadominantstrategy?Canyoudrawtheextensiveformforthegame?EXAMPLE8.2Rock,Paper,ScissorsRock,Paper,Scissorsisachildren’sgameinwhichthetwoplayerssimultaneouslydisplayoneofthreehandsymbols.Table8.6presentsthenormalform.Thezeropayoffsalongthediagonalshowthatifplayersadoptthesamestrategythennopaymentsaremade.Inothercases,thepayoffsindicatea$1paymentfromlosertowinnerundertheusualhierarchy(rockbreaksscissors,scissorscutpaper,papercoversrock).Asanyonewhohasplayedthisgameknows,andastheunderliningprocedurereveals,noneofthenineboxesrepresentsaNashequilibrium.Anystrategypairisunstablebecauseitoffersatleastoneoftheplayersanincentivetodeviate.Forexample,(scissors,scissors)providesanincentiveforeitherplayer1or2tochooserock;(paper,rock)providesanincentivefor2tochoosescissors.ThegamedoeshaveaNashequilibrium—notanyofthenineboxesinTable8.6butinmixedstrategies,definedinthenextsection.QUERY:Doesanyplayerhaveadominantstrategy?Whyisn’t(paper,scissors)aNashequilibrium?(b)UnderlyingprocedurePlayer2RockPaperScissorsPlayer1Rock0,01,11,1Paper1,10,01,1Scissors1,11,10,0TABLE8.6Rock,Paper,Scissors(a)NormalformPlayer2RockPaperScissorsPlayer1Rock0,01,11,1Paper1,10,01,1Scissors1,11,10,0Chapter8StrategyandGameTheory245
EXAMPLE8.3Three’sCompanyThree’sCompanyisathree-playerversionoftheBattleoftheSexesbasedona1970ssitcomofthesamenameaboutthemisadventuresofaman(Jack)andtwowomen(JanetandChrissy)whosharedanapartmenttosaverent.ModifythepayoffsfromtheBattleoftheSexesasfollows.Playersgetone“util”fromattendingtheirfavoriteevent(Jack’sisboxingandJanetandChrissy’sisballet).Playersgetanadditionalutilforeachoftheotherplayerswhoshowsupattheeventwiththem.Table8.7presentsthenormalform.Foreachofplayer3’sstrategies,thereisaseparatepayoffmatrixwithallcombinationsofplayer1and2’sstrategies.Eachboxliststhethreeplayers’payoffsinorder.Forplayers1and2,theunderliningprocedureisthesameasinatwo-playergameexceptthatitmustberepeatedforthetwopayoffmatrices.Tounderlineplayer3’sbest-responsepayoffs,comparethetwoboxesinthesamepositioninthetwodifferentmatrices.Forexample,givenJanetandChrissybothplayballet,wecomparethethirdpayoffintheupper-leftboxinbothmatrices:Jack’spayoffis2inthefirstmatrix(inwhichheplaysballet)and1inthesecond(inwhichheplaysboxing).Soweunderlinethe2.AsintheBattleoftheSexes,Three’sCompanyhastwoNashequilibria,oneinwhichallgotoballetandoneinwhichallgotoboxing.QUERY:WhatpayoffsmightmakeThree’sCompanyevencloserinspirittotheBattleoftheSexes?WhatwouldthenormalformlooklikeforFour’sCompany?(Four’sCompanyissimilartoThree’sCompanyexceptwithtwomenandtwowomen.)(b)UnderliningProcedurePlayer3(Jack)playsBalletPlayer2(Chrissy)BalletBoxingPlayer1ðJanetÞBallet3,3,22,0,1Boxing0,2,11,1,0TABLE8.7Three’sCompany(a)NormalformPlayer3(Jack)playsBalletPlayer2(Chrissy)BalletBoxingPlayer1ðJanetÞBallet3,3,22,0,1Boxing0,2,11,1,0Player3(Jack)playsBoxingPlayer2(Chrissy)BalletBoxingPlayer1ðJanetÞBallet2,2,11,1,2Boxing1,1,22,2,3Player3(Jack)playsBoxingPlayer2(Chrissy)BalletBoxingPlayer1ðJanetÞBallet2,2,11,1,2Boxing1,1,22,2,3246Part2ChoiceandDemand
MIXEDSTRATEGIESPlayers’strategiescanbemorecomplicatedthansimplychoosinganactionwithcertainty.Inthissectionwestudymixedstrategies,whichhavetheplayerrandomlyselectfromseveralpossibleactions.Bycontrast,thestrategiesconsideredintheexamplessofarhaveaplayerchooseoneactionoranotherwithcertainty;thesearecalledpurestrategies.Forexample,intheBattleoftheSexes,wehaveconsideredthepurestrategiesofchoosingeitherballetorboxingforsure.Apossiblemixedstrategyinthisgamewouldbetoflipacoinandthenattendtheballetifandonlyifthecoincomesupheads,yieldinga50–50chanceofshowingupateitherevent.Althoughatfirstglanceitmayseembizarretohaveplayersflippingcoinstodeterminehowtheywillplay,therearegoodreasonsforstudyingmixedstrategies.First,somegames(suchasRock,Paper,Scissors)havenoNashequilibriainpurestrategies.Aswewillseeinthesectiononexistence,suchgameswillalwayshaveaNashequilibriuminmixedstrategies,soallowingformixedstrategieswillenableustomakepredictionsinsuchgameswhereitwasimpossibletodosootherwise.Second,strategiesinvolvingrandomizationarequitenaturalandfamiliarincertainsettings.Studentsarefamiliarwiththesettingofclassexams.Classtimeisusuallytoolimitedfortheprofessortoexaminestudentsoneverytopictaughtinclass,butitmaybesufficienttoteststudentsonasubsetoftopicstoinducethemtostudyallofthematerial.Ifstudentsknewwhichtopicswereonthetestthentheymightbeinclinedtostudyonlythoseandnottheothers,sotheprofessormustchoosethetopicsatrandominordertogetthestudentstostudyeverything.Randomstrategiesarealsofamiliarinsports(thesamesoccerplayersometimesshootstotherightofthenetandsometimestotheleftonpenaltykicks)andincardgames(thepokerplayersometimesfoldsandsome-timesbluffswithasimilarlypoorhandatdifferenttimes).Third,itispossibleto“purify”mixedstrategiesbyspecifyingamorecomplicatedgameinwhichoneortheotheractionisbetterfortheplayerforprivatelyknownreasonsandwherethatactionisplayedwithcertainty.2Forexample,ahistoryprofessormightdecidetoaskanexamquestionaboutWorldWarIbecause,unbeknownsttothestudents,sherecentlyreadaninterestingjournalarticleaboutit.Tobemoreformal,supposethatplayerihasasetofMpossibleactionsAi¼fa1i,…,ami,…,aMig,wherethesubscriptreferstotheplayerandthesuperscripttothedifferentchoices.AmixedstrategyisaprobabilitydistributionovertheMactions,si¼ðσ1i,…,σmi,…,σMiÞ,whereσmiisanumberbetween0and1thatindicatestheprobabilityofplayeriplayingactionami.Theprobabilitiesinsimustsumtounity:σ1iþ…þσmiþ…þσMi¼1.IntheBattleoftheSexes,forexample,bothplayershavethesametwoactionsofballetandboxing,sowecanwriteA1¼A2¼fballet,boxingg.Wecanwriteamixedstrategyasapairofprobabilitiesðσ,1σÞ,whereσistheprobabilitythattheplayerchoosesballet.Theprobabilitiesmustsumtounityandso,withtwoactions,oncetheprobabilityofoneactionisspecified,theprobabilityoftheotherisdetermined.Mixedstrategy(1=3,2=3)meansthattheplayerplaysballetwithprobability1=3andboxingwithprobability2=3;(1=2,1=2)meansthattheplayerisequallylikelytoplayballetorboxing;(1,0)meansthattheplayerchoosesballetwithcertainty;and(0,1)meansthattheplayerchoosesboxingwithcertainty.Inourterminology,amixedstrategyisageneralcategorythatincludesthespecialcaseofapurestrategy.Apurestrategyisthespecialcaseinwhichonlyoneactionisplayedwith2JohnHarsanyi,“GameswithRandomlyDisturbedPayoffs:ANewRationaleforMixed-StrategyEquilibriumPoints,”InternationalJournalofGameTheory2(1973):1–23.Harsanyiwasaco-winner(alongwithNash)ofthe1994NobelPrizeineconomics.Chapter8StrategyandGameTheory247
positiveprobability.Mixedstrategiesthatinvolvetwoormoreactionsbeingplayedwithpos-itiveprobabilityarecalledstrictlymixedstrategies.ReturningtotheexamplesfromthepreviousparagraphofmixedstrategiesintheBattleoftheSexes,allfourstrategies(1=3,2=3),(1=2,1=2),(1,0),and(0,1)aremixedstrategies.Thefirsttwoarestrictlymixedandthesecondtwoarepurestrategies.Withthisnotationforactionsandmixedstrategiesbehindus,wedonotneednewdefinitionsforbestresponse,Nashequilibrium,anddominantstrategy.Thedefinitionsintroducedwhensiwastakentobeapurestrategyalsoapplytothecaseinwhichsiistakentobeamixedstrategy.Theonlychangeisthatthepayofffunctionuiðsi,siÞ,ratherthanbeingacertainpayoff,mustbereinterpretedastheexpectedvalueofarandompayoff,withprobabilitiesgivenbythestrategiessiandsi.Example8.4providessomepracticeincomputingexpectedpayoffsintheBattleoftheSexes.EXAMPLE8.4ExpectedPayoffsintheBattleoftheSexesLet’scomputeplayers’expectedpayoffsifthewifechoosesthemixedstrategy(1=9,8=9)andthehusband(4=5,1=5)intheBattleoftheSexes.Thewife’sexpectedpayoffisU119,89,45,15¼1945U1ðballet,balletÞþ1915U1ðballet,boxingÞþ8945U1ðboxing,balletÞþ8915U1ðboxing,boxingÞ¼1945ð2Þþ1915ð0Þþ8945ð0Þþ8915ð1Þ¼1645.(8.4)TounderstandEquation8.4,itishelpfultoreviewtheconceptofexpectedvaluefromChapter2.Equation(2.176)indicatesthatanexpectedvalueofarandomvariableequalsthesumoveralloutcomesoftheprobabilityoftheoutcomemultipliedbythevalueoftherandomvariableinthatoutcome.IntheBattleoftheSexes,therearefouroutcomes,correspondingtothefourboxesinTable8.3.Sinceplayersrandomizeindependently,theprobabilityofreachingaparticularboxequalstheproductoftheprobabilitiesthateachplayerplaysthestrategyleadingtothatbox.So,forexample,theprobabilityof(boxing,ballet)—thatis,thewifeplaysboxingandthehusbandplaysballet—equalsð8=9Þð4=5Þ.Theprobabilitiesofthefouroutcomesaremultipliedbythevalueoftherelevantrandomvariable(inthiscase,player1’spayoff)ineachoutcome.Nextwecomputethewife’sexpectedpayoffifsheplaysthepurestrategyofgoingtoballet[thesameasthemixedstrategy(1,0)]andthehusbandcontinuestoplaythemixedstrategyð4=5,1=5Þ.Nowthereareonlytworelevantoutcomes,givenbythetwoboxesintherowinwhichthewifeplaysballet.Theprobabilitiesofthetwooutcomesaregivenbytheprobabilitiesinthehusband’smixedstrategy.Therefore,U1ballet,45,15¼45U1ðballet,balletÞþ15U1ðballet,boxingÞ¼45ð2Þþ15ð0Þ¼85.(8.5)Finally,wewillcomputethegeneralexpressionforthewife’sexpectedpayoffwhensheplaysmixedstrategyðw,1wÞandthehusbandplaysðh,1hÞ:ifthewifeplaysballetwithprobabilitywandthehusbandwithprobabilityh,then248Part2ChoiceandDemand
u1ððw,1wÞ,ðh,1hÞÞ¼ðwÞðhÞU1ðballet,balletÞþðwÞð1hÞU1ðballet,boxingÞþð1wÞðhÞU1ðboxing,balletÞþð1wÞð1hÞU1ðboxing,boxingÞ¼ðwÞðhÞð2ÞþðwÞð1hÞð0Þþð1wÞðhÞð0Þþð1wÞð1hÞð1Þ¼1hwþ3hw.(8.6)QUERY:Whatisthehusband’sexpectedpayoffineachcase?Showthathisexpectedpayoffis22h2wþ3hwinthegeneralcase.Giventhehusbandplaysthemixedstrategyð4=5,1=5Þ,whatstrategyprovidesthewifewiththehighestpayoff?ComputingNashequilibriumofagamewhenstrictlymixedstrategiesareinvolvedisquiteabitmorecomplicatedthanwhenpurestrategiesareinvolved.Beforewadingin,wecansavealotofworkbyaskingwhetherthegameevenhasaNashequilibriuminstrictlymixedstrategies.Ifitdoesnotthen,havingfoundallthepure-strategyNashequilibria,onehasfinishedanalyzingthegame.ThekeytoguessingwhetheragamehasaNashequilibriuminstrictlymixedstrategiesisthesurprisingresultthatalmostallgameshaveanoddnumberofNashequilibria.3Let’sapplythisinsighttosomeoftheexamplesconsideredsofar.Wefoundanoddnumber(one)ofpure-strategyNashequilibriainthePrisoners’Dilemma,suggestingweneednotlookfurtherforoneinstrictlymixedstrategies.IntheBattleoftheSexes,wefoundanevennumber(two)ofpure-strategyNashequilibria,suggestingtheexistenceofathirdoneinstrictlymixedstrategies.Example8.2—Rock,Paper,Scissors—hasnopure-strategyNashequilibria.ToarriveatanoddnumberofNashequilibria,wewouldexpecttofindoneNashequilibriuminstrictlymixedstrategies.EXAMPLE8.5Mixed-StrategyNashEquilibriumintheBattleoftheSexesAgeneralmixedstrategyforthewifeintheBattleoftheSexesisðw,1wÞandforthehusbandisðh,1hÞ;wherewandharetheprobabilitiesofplayingballetforthewifeandhusband,respectively.WewillcomputevaluesofwandhthatmakeupNashequilibria.Bothplayershaveacontinuumofpossiblestrategiesbetween0and1.Therefore,wecannotwritethesestrategiesintherowsandcolumnsofamatrixandunderlinebest-responsepayoffstofindtheNashequilibria.Instead,wewillusegraphicalmethodstosolvefortheNashequilibria.Givenplayers’generalmixedstrategies,wesawinExample8.4thatthewife’sexpectedpayoffisu1ððw,1wÞ,ðh,1hÞÞ¼1hwþ3hw.(8.7)AsEquation8.7shows,thewife’sbestresponsedependsonh.Ifh<1=3,shewantstosetwaslowaspossible:w¼0.Ifh>1=3,herbestresponseistosetwashighaspossible:w¼1.Whenh¼1=3,herexpectedpayoffequals2=3regardlessofwhatwshechooses.Inthiscasethereisatieforthebestresponse,includinganywfrom0to1.(continued)3JohnHarsanyi,“OddnessoftheNumberofEquilibriumPoints:ANewProof,”InternationalJournalofGameTheory2(1973):235–50.GamesinwhichtherearetiesbetweenpayoffsmayhaveanevenorinfinitenumberofNashequilibria.Example8.1,thePrisoners’DilemmaRedux,hasseveralpayoffties.Thegamehasfourpure-strategyNashequilibriaandaninfinitenumberofdifferentmixedstrategyequilibria.Chapter8StrategyandGameTheory249
EXAMPLE8.5CONTINUEDInExample8.4,westatedthatthehusband’sexpectedpayoffisU2ððh,1hÞ,ðw,1wÞÞ¼22h2wþ3hw.(8.8)Whenw<2=3,hisexpectedpayoffismaximizedbyh¼0;whenw>2=3,hisexpectedpayoffismaximizedbyh¼1;andwhenw¼2=3,heisindifferentamongallvaluesofh,obtaininganexpectedpayoffof2=3regardless.ThebestresponsesaregraphedinFigure8.3.TheNashequilibriaaregivenbytheintersectionpointsbetweenthebestresponses.Attheseintersectionpoints,bothplayersarebestrespondingtoeachother,whichiswhatisrequiredfortheoutcometobeaNashequilibrium.TherearethreeNashequilibria.ThepointsE1andE2arethepure-strategyNashequilibriawefoundbefore,withE1correspondingtothepure-strategyNashequilibriuminwhichbothplayboxingandE2tothatinwhichbothplayballet.PointE3isthestrictlymixed-strategyNashequilibrium,whichcancanbespelledoutas“thewifeplaysballetwithprobability2=3andboxingwithprobability1=3andthehusbandplaysballetwithprobability1=3andboxingwithprobability2=3.”Moresuccinctly,havingdefinedwandh,wemaywritetheequilibruimas“w¼2=3andh¼1=3.”QUERY:Whatisaplayer’sexpectedpayoffintheNashequilibriuminstrictlymixedstrate-gies?Howdoesthispayoffcomparetothoseinthepure-strategyNashequilibria?WhatargumentsmightbeofferedthatoneoranotherofthethreeNashequilibriamightbethebestpredictioninthisgame?FIGURE8.3NashEquilibriainMixedStrategiesintheBattleoftheSexesBalletischosenbythewifewithprobabilitywandbythehusbandwithprobabilityh.Players’bestresponsesaregraphedonthesamesetofaxes.ThethreeintersectionpointsE1,E2,andE3areNashequilibria.TheNashequilibriuminstrictlymixedstrategies,E3,isw¼2=3andh¼1=3.Husband’sbest response,BR212/31/31/32/310Wife’s bestresponse,BR1E2E3E1hw250Part2ChoiceandDemand
Example8.5runsthroughthelengthycalculationsinvolvedinfindingalltheNashequi-libriaoftheBattleoftheSexes,thoseinpurestrategiesandthoseinstrictlymixedstrategies.Thestepsinvolvefindingplayers’expectedpayoffsasfunctionsofgeneralmixedstrategies,usingthesetofindplayers’bestresponses,andthengraphingplayers’bestresponsestoseewheretheyintersect.AshortcuttofindingtheNashequilibriuminstrictlymixedstrategiesisbasedontheinsightthataplayerwillbewillingtorandomizebetweentwoactionsinequilibriumonlyifheorshegetsthesameexpectedpayofffromplayingeitheractionor,inotherwords,isindifferentbetweenthetwoactionsinequilibrium.Otherwise,oneofthetwoactionswouldprovideahigherexpectedpayoff,andtheplayerwouldprefertoplaythatactionwithcertainty.Supposethehusbandisplayingmixedstrategyðh,1hÞ;thatis,playingballetwithprobabilityhandboxingwithprobability1h.Thewife’sexpectedpayofffromplayingballetisU1ðballet,ðh,1hÞÞ¼ðhÞð2Þþð1hÞð0Þ¼2h.(8.9)HerexpectedpayofffromplayingboxingisU1ðboxing,ðh,1hÞÞ¼ðhÞð0Þþð1hÞð1Þ¼1h.(8.10)Forthewifetobeindifferentbetweenballetandboxinginequilibrium,Equations8.9and8.10mustbeequal:2h¼1h,implyingh¼1=3.Similarcalculationsbasedonthehusband’sindifferencebetweenplayingballetandboxinginequilibriumshowthatthewife’sprobabilityofplayingballetinthestrictlymixedstrategyNashequilibriumisw¼2=3.(Workthroughthesecalculationsasanexercise.)Noticethatthewife’sindifferenceconditiondoesnot“pindown”herequilibriummixedstrategy.Thewife’sindifferenceconditioncannotpindownherownequilibriummixedstrat-egybecause,giventhatsheisindifferentbetweenthetwoactionsinequilibrium,heroverallexpectedpayoffisthesamenomatterwhatprobabilitydistributionsheplaysoverthetwoactions.Rather,thewife’sindifferenceconditionpinsdowntheotherplayer’s—thehusband’s—mixedstrategy.Thereisauniqueprobabilitydistributionhecanusetoplayballetandboxingthatmakesherindifferentbetweenthetwoactionsandthusmakesherwillingtorandomize.Givenanyprobabilityofhisplayingballetandboxingotherthanð1=3,2=3Þ,itwouldnotbeastableoutcomeforhertorandomize.Thus,twoprinciplesshouldbekeptinmindwhenseekingNashequilibriainstrictlymixedstrategies.Oneisthataplayerrandomizesoveronlythoseactionsamongwhichheorsheisindifferent,givenotherplayers’equilibriummixedstrategies.Thesecondisthatoneplayer’sindifferenceconditionpinsdowntheotherplayer’smixedstrategy.EXISTENCEOneofthereasonsNashequilibriumissowidelyusedisthataNashequilibriumisguaranteedtoexistinawideclassofgames.Thisisnottrueforsomeotherequilibriumconcepts.Considerthedominantstrategyequilibriumconcept.ThePrisoners’Dilemmahasadominantstrategyequilibrium(bothsuspectsfink),butmostgamesdonot.Indeed,therearemanygames—including,forexample,theBattleoftheSexes—inwhichnoplayerhasadominantstrategy,letalonealltheplayers.Insuchgames,wecan’tmakepredictionsusingdominantstrategyequilibriumbutwecanusingNashequilibrium.TheExtensionssectionattheendofthischapterwillprovidethetechnicaldetailsbehindJohnNash’sproofoftheexistenceofhisequilibriuminallfinitegames(gameswithafinitenumberofplayersandafinitenumberofactions).Theexistencetheoremdoesnotguaranteetheexistenceofapure-strategyNashequilibrium.Wealreadysawanexample:Rock,Paper,Chapter8StrategyandGameTheory251
ScissorsinExample8.2.However,ifafinitegamedoesnothaveapure-strategyNashequilibrium,thetheoremguaranteesthatitwillhaveamixed-strategyNashequilibrium.TheproofofNash’stheoremissimilartotheproofinChapter13oftheexistenceofpricesleadingtoageneralcompetitiveequilibrium.TheExtensionssectionincludesanexistenceproofforgameswithacontinuumofactions,asstudiedinthenextsection.CONTINUUMOFACTIONSMostoftheinsightfromeconomicsituationscanoftenbegainedbydistillingthesituationdowntoafeworeventwoactions,aswithallthegamesstudiedsofar.Othertimes,additionalinsightcanbegainedbyallowingacontinuumofactions.Tobeclear,wehavealreadyencounteredacontinuumofstrategies—inourdiscussionofmixedstrategies—butstilltheprobabilitydistributionsinmixedstrategieswereoverafinitenumberofactions.Inthissectionwefocusoncontinuumofactions.Somesettingsaremorerealisticallymodeledviaacontinuousrangeofactions.InChapter15,forexample,wewillstudycompetitionbetweenstrategicfirms.Inonemodel(Bertrand),firmssetprices;inanother(Cournot),firmssetquantities.Itisnaturaltoallowfirmstochooseanynonnegativepriceorquantityratherthanartificiallyrestrictingthemtojusttwoprices(say,$2or$5)ortwoquantities(say,100or1,000units).Continuousactionshaveseveralotheradvan-tages.Withcontinuousactions,thefamiliarmethodsfromcalculuscanoftenbeusedtosolveforNashequilibria.Itisalsopossibletoanalyzehowtheequilibriumactionsvarywithchangesinunderlyingparameters.WiththeCournotmodel,forexample,wemightwanttoknowhowequilibriumquantitieschangewithasmallincreaseinafirm’smarginalcostsorademandparameter.TragedyoftheCommonsExample8.6illustrateshowtosolvefortheNashequilibriumwhenthegame(inthiscase,theTragedyoftheCommons)involvesacontinuumofactions.Thefirststepistowritedownthepayoffforeachplayerasafunctionofallplayers’actions.Thenextstepistocomputethefirst-orderconditionassociatedwitheachplayer’spayoffmaximum.Thiswillgiveanequa-tionthatcanberearrangedintothebestresponseofeachplayerasafunctionofallotherplayers’actions.Therewillbeoneequationforeachplayer.Withnplayers,thesystemofnequationsforthenunknownequilibriumactionscanbesolvedsimultaneouslybyeitheralgebraicorgraphicalmethods.EXAMPLE8.6TragedyoftheCommonsTheterm“TragedyoftheCommons”hascometosignifyenvironmentalproblemsofover-usethatarisewhenscarceresourcesaretreatedascommonproperty.4Agame-theoreticillustrationofthisissuecanbedevelopedbyassumingthattwoherdersdecidehowmanysheeptograzeonthevillagecommons.Theproblemisthatthecommonsisquitesmallandcanrapidlysuccumbtoovergrazing.Inordertoaddsomemathematicalstructuretotheproblem,letqibethenumberofsheepthatherderi¼1,2grazesonthecommons,andsupposethattheper-sheepvalueofgrazingonthecommons(intermsofwoolandsheep-milkcheese)is4ThistermwaspopularizedbyG.Hardin,“TheTragedyoftheCommons,”Science162(1968):1243–48.252Part2ChoiceandDemand
vðq1,q2Þ¼120ðq1þq2Þ:(8.11)Thisfunctionimpliesthatthevalueofgrazingagivennumberofsheepislowerthemoresheeparearoundcompetingforgrass.Wecannotuseamatrixtorepresentthenormalformofthisgameofcontinuousactions.Instead,thenormalformissimplyalistingoftheherders’payofffunctionsu1ðq1,q2Þ¼q1vðq1,q2Þ¼q1ð120q1q2Þ,u2ðq1,q2Þ¼q2vðq1,q2Þ¼q2ð120q1q2Þ:(8.12)TofindtheNashequilibrium,wesolveherder1’svalue-maximizationproblem:maxq1fq1ð120q1q2Þg:(8.13)Thefirst-orderconditionforamaximumis1202q1q2¼0(8.14)or,rearranging,q1¼60q22¼BR1ðq2Þ:(8.15)Similarstepsshowthatherder2’sbestresponseisq2¼60q12¼BR2ðq1Þ:(8.16)TheNashequilibriumisgivenbythepairðq1,q2ÞthatsatisfiesEquations8.15and8.16simultaneously.Takinganalgebraicapproachtothesimultaneoussolution,Equation8.16canbesubstitutedintoEquation8.15,whichyieldsq1¼601260q12;(8.17)uponrearranging,thisimpliesq1¼40.Substitutingq1¼40intoEquation8.17impliesq2¼40aswell.Thus,eachherderwillgraze40sheeponthecommon.Eachearnsapayoffof1,600,ascanbeseenbysubstitutingq1¼q2¼40intothepayofffunctioninEquation8.13.Equations8.15and8.16canalsobesolvedsimultaneouslyusinggraphicalmethods.Figure8.4plotsthetwobestresponsesonagraphwithplayer1’sactiononthehorizontalaxisandplayer2’sontheverticalaxis.Thesebestresponsesaresimplylinesandsoareeasytographinthisexample.(Tobeconsistentwiththeaxislabels,theinverseofEquation8.15isactuallywhatisgraphed.)ThetwobestresponsesintersectattheNashequilibriumE1.ThegraphicalmethodisusefulforshowinghowtheNashequilibriumshiftswithchangesintheparametersoftheproblem.Supposetheper-sheepvalueofgrazingincreasesforthefirstherderwhilethesecondremainsasinEquation8.11,perhapsbecausethefirstherderstartsraisingmerinosheepwithmorevaluablewool.Thischangewouldshiftthebestresponseoutforherder1whileleaving2’sthesame.Thenewintersectionpoint(E2inFigure8.4),whichisthenewNashequilibrium,involvesmoresheepfor1andfewerfor2.TheNashequilibriumisnotthebestuseofthecommons.Intheoriginalproblem,bothherders’per-sheepvalueofgrazingisgivenbyEquation8.11.Ifbothgrazedonly30sheeptheneachwouldearnapayoffof1,800,ascanbeseenbysubstitutingq1¼q2¼30intoEquation8.13.Indeed,the“jointpayoffmaximization”problemmaxq1fðq1þq2Þvðq1,q2Þg¼maxq1fðq1þq2Þð120q1q2Þg(8.18)issolvedbyq1¼q2¼30or,moregenerally,byanyq1andq2thatsumto60.(continued)Chapter8StrategyandGameTheory253
EXAMPLE8.6CONTINUEDQUERY:HowwouldtheNashequilibriumshiftifbothherders’benefitsincreasedbythesameamount?Whataboutadecreasein(only)herder2’sbenefitfromgrazing?AsExample8.6shows,graphicalmethodsareparticularlyconvenientforquicklydeter-mininghowtheequilibriumshiftswithchangesintheunderlyingparameters.Theexampleshiftedthebenefitofgrazingtooneofherders.Thisexercisenicelyillustratesthenatureofstrategicinteraction.Herder2’spayofffunctionhasn’tchanged(onlyherder1’shas),yethisequilibriumactionchanges.Thesecondherderobservesthefirst’shigherbenefit,anticipatesthatthefirstwillincreasethenumberofsheephegrazes,andreduceshisowngrazinginresponse.TheTragedyoftheCommonsshareswiththePrisoners’DilemmathefeaturethattheNashequilibriumislessefficientforallplayersthansomeotheroutcome.InthePrisoners’Dilemma,bothfinkinequilibriumwhenitwouldbemoreefficientforbothtobesilent.IntheTragedyoftheCommons,theherdersgrazemoresheepinequilibriumthaniseffi-cient.Thisinsightmayexplainwhyoceanfishinggroundsandothercommonresourcescanendupbeingoverusedeventothepointofexhaustioniftheiruseisleftunregulated.Moredetailonsuchproblems—involvingwhatwewillcallnegativeexternalities—isprovidedinChapter19.FIGURE8.4Best-ResponseDiagramfortheTragedyoftheCommonsTheintersection,E1,betweenthetwoherders’bestresponsesistheNashequilibrium.Anincreaseintheper-sheepvalueofgrazingintheTragedyoftheCommonsshiftsoutherder1’sbestresponse,resultinginaNashequilibriumE2inwhichherder1grazesmoresheep(andherder2,fewersheep)thanintheoriginalNashequilibrium.120601204004060E1E2BR2(q1)BR1(q2)q2q1254Part2ChoiceandDemand
SEQUENTIALGAMESInsomegames,theorderofmovesmatters.Forexample,inabicycleracewithastaggeredstart,itmayhelptogolastandthusknowthetimetobeat.Ontheotherhand,competitiontoestablishanewhigh-definitionvideoformatmaybewonbythefirstfirmtomarketitstechnology,therebycapturinganinstalledbaseofconsumers.Sequentialgamesdifferfromthesimultaneousgameswehaveconsideredsofarinthataplayerthatmoveslaterinthegamecanobservehowothershaveplayeduptothatmoment.Theplayercanusethisinformationtoformmoresophisticatedstrategiesthansimplychoos-inganaction;theplayer’sstrategycanbeacontingentplanwiththeactionplayeddependingonwhattheotherplayershavedone.Toillustratethenewconceptsraisedbysequentialgames—and,inparticular,tomakeastarkcontrastbetweensequentialandsimultaneousgames—wetakeasimultaneousgamewehavediscussedalready,theBattleoftheSexes,andturnitintoasequentialgame.SequentialBattleoftheSexesConsidertheBattleoftheSexesgameanalyzedpreviouslywithallthesameactionsandpayoffs,butnowchangethetimingofmoves.Ratherthanthewifeandhusbandmakingasimultaneouschoice,thewifemovesfirst,choosingballetorboxing;thehusbandobservesthischoice(say,thewifecallshimfromherchosenlocation)andthenthehusbandmakeshischoice.Thewife’spossiblestrategieshavenotchanged:shecanchoosethesimpleactionsballetorboxing(orperhapsamixedstrategyinvolvingbothactions,althoughthiswillnotbearelevantconsiderationinthesequentialgame).Thehusband’ssetofpossiblestrategieshasexpanded.Foreachofthewife’stwoactions,hecanchooseoneoftwoactions,sohehasfourpossiblestrategies,whicharelistedinTable8.8.Theverticalbarinthehusband’sstrategiesmeans“conditionalon”andso,forexample,“boxing|ballet”shouldbereadas“thehusbandchoosesboxingconditionalonthewife’schoosingballet”.Giventhatthehusbandhasfourpurestrategiesratherthanjusttwo,thenormalform(giveninTable8.9)mustnowbeexpandedtoeightboxes.Roughlyspeaking,thenormalformistwiceascomplicatedasthatforthesimultaneousversionofthegameinTable8.3.Bycontrast,theextensiveform,giveninFigure8.5,isnomorecomplicatedthantheextensiveformforthesimultaneousversionofthegameinFigure8.2.TheonlydifferencebetweentheTABLE8.8Husband’sContingentStrategiesContingentstrategyWritteninconditionalformatAlwaysgototheballet(ballet|ballet,ballet|boxing)Followhiswife(ballet|ballet,boxing|boxing)Dotheopposite(boxing|ballet,ballet|boxing)Alwaysgotoboxing(boxing|ballet,boxing|boxing)TABLE8.9NormalFormfortheSequentialBattleoftheSexesHusband(Ballet|BalletBallet|Boxing)(Ballet|BalletBoxing|Boxing)(Boxing|BalletBallet|Boxing)(Boxing|BalletBoxing|Boxing)WifeBallet2,12,10,00,0Boxing0,01,20,01,2Chapter8StrategyandGameTheory255
extensiveformsisthattheovalaroundthehusband’sdecisionnodeshasbeenremoved.Inthesequentialversionofthegame,thehusband’sdecisionnodesarenotgatheredtogetherinthesameinformationsetbecausethehusbandobserveshiswife’sactionandsoknowswhichnodeheisonbeforemoving.Wecanbegintoseewhytheextensiveformbecomesmoreusefulthanthenormalformforsequentialgames,especiallyingameswithmanyroundsofmoves.TosolvefortheNashequilibria,considerthenormalforminTable8.9.Applyingthemethodofunderliningbest-responsepayoffs—beingcarefultounderlinebothpayoffsincasesoftiesforthebestresponse—revealsthreepure-strategyNashequilibria:1.wifeplaysballet,husbandplays(ballet|ballet,ballet|boxing);2.wifeplaysballet,husbandplays(ballet|ballet,boxing|boxing);3.wifeplaysboxing,husbandplays(boxing|ballet,boxing|boxing).AswiththesimultaneousversionoftheBattleoftheSexes,hereagainwehavemultipleequi-libria.Yetnowgametheoryoffersagoodwaytoselectamongtheequilibria.ConsiderthethirdNashequilibrium.Thehusband’sstrategy(boxing|ballet,boxing|boxing)involvestheimplicitthreatthathewillchooseboxingevenifhiswifechoosesballet.Thisthreatissufficienttodeterherfromchoosingballet.Giventhatshechoosesboxinginequilibrium,hisstrategyearnshim2,whichisthebesthecandoinanyoutcome.SotheoutcomeisaNashequilibrium.Butthehus-band’sthreatisnotcredible—thatis,itisanemptythreat.Ifthewifereallyweretochooseballetfirst,thenhewouldbegivingupapayoffof1bychoosingboxingratherthanballet.Itisclearwhyhewouldwanttothreatentochooseboxing,butitisnotclearthatsuchathreatshouldbebelieved.Similarly,thehusband’sstrategy(ballet|ballet,ballet|boxing)inthefirstNashequilib-riumalsoinvolvesanemptythreat:thathewillchooseballetifhiswifechoosesboxing.(Thisisanoddthreattomakesincehedoesnotgainfrommakingit,butitisanemptythreatnonetheless.)Anotherwaytounderstandemptyversuscrediblethreatsisbyusingtheconceptoftheequilibriumpath,theconnectedpaththroughthegametreeimpliedbyequilibriumstrategies.FIGURE8.5ExtensiveFormfortheSequentialBattleoftheSexesInthesequentialversionoftheBattleoftheSexes,thehusbandmovessecondafterobservinghiswife’smove.Thehusband’sdecisionnodesarenotgatheredinthesameinformationset.Ballet20, 01, 20, 02, 121BalletBalletBoxingBoxingBoxing256Part2ChoiceandDemand
Figure8.6usesadashedlinetoillustratetheequilibriumpathforthethirdofthelistedNashequilibriainthesequentialBattleoftheSexes.ThethirdoutcomeisaNashequilibriumbecausethestrategiesarerationalalongtheequilibriumpath.However,followingthewife’schoosingballet—aneventthatisofftheequilibriumpath—thehusband’sstrategyisirrational.Theconceptofsubgame-perfectequilibriuminthenextsectionwillruleoutirrationalplaybothonandofftheequilibriumpath.Subgame-perfectequilibriumGametheoryoffersaformalwayofselectingthereasonableNashequilibriainsequentialgamesusingtheconceptofsubgame-perfectequilibrium.Subgame-perfectequilibriumisarefinementthatrulesoutemptythreatsbyrequiringstrategiestoberationalevenforcon-tingenciesthatdonotariseinequilibrium.Beforedefiningsubgame-perfectequilibriumformally,weneedafewpreliminarydefini-tions.Asubgameisapartoftheextensiveformbeginningwithadecisionnodeandincludingeverythingthatbranchesouttotherightofit.Apropersubgameisasubgamethatstartsatadecisionnodenotconnectedtoanotherinaninformationset.Conceptually,thismeansthattheplayerwhomovesfirstinapropersubgameknowstheactionsplayedbyothersthathaveleduptothatpoint.Itiseasiertoseewhatapropersubgameisthantodefineitinwords.Figure8.7showstheextensiveformsfromthesimultaneousandsequentialversionsoftheBattleoftheSexeswithboxesdrawnaroundthepropersubgamesineach.InthesimultaneousBattleoftheSexes,thereisonlyonedecisionnode—thetopmostmode—thatisnotconnectedtoanotherinthesameinformationset;hencethereisonlyonepropersubgame,thegameitself.InthesequentialBattleoftheSexes,therearethreepropersubgames:thegameitselfandtwolowersubgamesstartingwithdecisionnodeswherethehusbandgetstomove.FIGURE8.6EquilibriumPathInthethirdoftheNashequilibrialistedforthesequentialBattleoftheSexes,thewifeplaysboxingandthehusbandplays(boxing|ballet,boxing|boxing),tracingoutthebranchesindicatedwiththicklines(bothsolidanddashed).Thedashedlineistheequilibriumpath;therestofthetreeisreferredtoasbeing“offtheequilibriumpath.”Ballet20, 01, 20, 02, 121BalletBalletBoxingBoxingBoxingChapter8StrategyandGameTheory257
DEFINITIONSubgame-perfectequilibrium.Asubgame-perfectequilibriumisastrategyprofileðs1,s2,…,snÞthatconstitutesaNashequilibriumforeverypropersubgame.Asubgame-perfectequilibriumisalwaysaNashequilibrium.Thisistruebecausethewholegameisapropersubgameofitselfandsoasubgame-perfectequilibriummustbeaNashequilibriumforthewholegame.InthesimultaneousversionoftheBattleoftheSexes,thereisnothingmoretosaybecausetherearenosubgamesotherthanthewholegameitself.InthesequentialversionoftheBattleoftheSexes,subgame-perfectequilibriumhasmorebite.StrategiesmustnotonlyformaNashequilibriumonthewholegameitself,theymustalsoformNashequilibriaonthetwopropersubgamesstartingwiththedecisionpointsatwhichthehusbandmoves.Thesesubgamesaresimpledecisionproblems,soitiseasytocomputethecorrespondingNashequilibria.ForsubgameC,beginningwiththehusband’sdecisionnodefollowinghiswife’schoosingballet,hehasasimpledecisionbetweenballet(whichearnshimapayoffof1)andboxing(whichearnshimapayoffof0).TheNashequilibriuminthissimpledecisionsubgameisforthehusbandtochooseballet.Fortheothersubgame,D,hehasasimpledecisionbetweenballet,whichearnshim0,andboxing,whichearnshim2.TheNashequi-libriuminthissimpledecisionsubgameisforhimtochooseboxing.Thehusbandthereforehasonlyonestrategythatcanbepartofasubgame-perfectequilibrium:(ballet|ballet,boxing|boxing).AnyotherstrategyhashimplayingsomethingthatisnotaNashequilibriumforsomepropersubgame.ReturningtothethreeenumeratedNashequilibria,onlythesecondissub-gameperfect;thefirstandthethirdarenot.Forexample,thethirdequilibrium,inwhichthehusbandalwaysgoestoboxing,isruledoutasasubgame-perfectequilibriumbecausetheFIGURE8.7ProperSubgamesintheBattleoftheSexesThesimultaneousBattleoftheSexesin(a)hasonlyonepropersubgame:thewholegameitself,labeledA.ThesequentialBattleoftheSexesin(b)hasthreepropersubgames,labeledB,C,andD.122BoxingBalletABoxing(b) Sequential1, 20, 00, 02, 1BoxingBalletBallet122BoxingBalletBCDBoxing1, 20, 00, 02, 1BoxingBalletBallet(a) Simultaneous258Part2ChoiceandDemand
husband’sstrategy(boxing|boxing)isnotaNashequilibriuminpropersubgameC:Subgame-perfectequilibriumthusrulesouttheemptythreat(ofalwaysgoingtoboxing)thatwewereuncomfortablewithearlier.Moregenerally,subgame-perfectequilibriumrulesoutanysortofemptythreatinasequentialgame.Ineffect,Nashequilibriumrequiresbehaviortoberationalonlyontheequilibriumpath.Playerscanchoosepotentiallyirrationalactionsonotherpartsofthegametree.Inparticular,oneplayercanthreatentodamagebothinordertoscaretheotherfromchoosingcertainactions.Subgame-perfectequilibriumrequiresrationalbehaviorbothonandofftheequilibriumpath.Threatstoplayirrationally—thatis,threatstochoosesomethingotherthanone’sbestresponse—areruledoutasbeingempty.Subgame-perfectequilibriumisnotausefulrefinementforasimultaneousgame.Thisisbecauseasimultaneousgamehasnopropersubgamesbesidesthegameitselfandsosubgame-perfectequilibriumwouldnotreducethesetofNashequilibria.BackwardinductionOurapproachtosolvingfortheequilibriuminthesequentialBattleoftheSexeswastofindalltheNashequilibriausingthenormalformandthentoseekamongthoseforthesubgame-perfectequilibrium.Ashortcutforfindingthesubgame-perfectequilibriumdirectlyistousebackwardinduction,theprocessofsolvingforequilibriumbyworkingbackwardsfromtheendofthegametothebeginning.Backwardinductionworksasfollows.Identifyallofthesubgamesatthebottomoftheextensiveform.FindtheNashequilibriaonthesesubgames.Replacethe(potentiallycomplicated)subgameswiththeactionsandpayoffsresultingfromNashequilibriumplayonthesesubgames.Thenmoveuptothenextlevelofsubgamesandrepeattheprocedure.Figure8.8illustratestheuseofbackwardinductiontosolveforthesubgame-perfectequilibriumofthesequentialBattleoftheSexes.First,wecomputetheNashequilibriaofFIGURE8.8ApplyingBackwardInductionThelastsubgames(whereplayer2moves)arereplacedbytheNashequilibriaonthesesubgames.Thesimplegamethatresultsatrightcanbesolvedforplayer1’sequilibriumaction.122BoxingBalletBoxing1, 20, 00, 02, 1BoxingBalletBalletBoxingBallet12 playsboxing | boxingpayoff 1, 22 playsballet | balletpayoff 2, 1Chapter8StrategyandGameTheory259
thebottommostsubgamesatthehusband’sdecisionnodes.Inthesubgamefollowinghiswife’schoosingballet,hewouldchooseballet,givingpayoffs2forherand1forhim.Inthesubgamefollowinghiswife’schoosingboxing,hewouldchooseboxing,givingpayoffs1forherand2forhim.Next,substitutethehusband’sequilibriumstrategiesforthesubgamesthemselves.Theresultinggameisasimpledecisionproblemforthewife(drawninthelowerpanelofthefigure):achoicebetweenballet,whichwouldgiveherapayoffof2,andboxing,whichwouldgiveherapayoffof1.TheNashequilibriumofthisgameisforhertochoosetheactionwiththehigherpayoff,ballet.Insum,backwardinductionallowsustojumpstraighttothesubgame-perfectequilibriuminwhichthewifechoosesballetandthehusbandchooses(ballet|ballet,boxing|boxing),bypassingtheotherNashequilibria.Backwardinductionisparticularlyusefulingamesthatfeaturemultipleroundsofsequen-tialplay.Asroundsareadded,itquicklybecomestoohardtosolveforalltheNashequilibriaandthentosortthroughwhicharesubgame-perfect.Withbackwardinduction,anadditionalroundissimplyaccommodatedbyaddinganotheriterationoftheprocedure.REPEATEDGAMESInthegamesexaminedsofar,eachplayermakesonechoiceandthegameends.Inmanyreal-worldsettings,playersplaythesamegameoverandoveragain.Forexample,theplayersinthePrisoners’DilemmamayanticipatecommittingfuturecrimesandthusplayingfuturePrisoners’Dilemmastogether.Gasolinestationslocatedacrossthestreetfromeachother,whentheysettheirpriceseachmorning,effectivelyplayanewpricinggameeveryday.Thesimpleconstituentgame(e.g.,thePrisoners’Dilemmaorthegasoline-pricinggame)thatisplayedrepeatedlyiscalledthestagegame.AswesawwiththePrisoners’Dilemma,theequilibriuminoneplayofthestagegamemaybeworseforallplayersthansomeother,morecooperative,outcome.Repeatedplayofthestagegameopensupthepossibilityofcooperationinequilibrium.Playerscanadopttriggerstrategies,wherebytheycontinuetocooperateaslongasallhavecooperateduptothatpointbutreverttoplayingtheNashequilibriumifanyonedeviatesfromcooperation.Wewillinvestigatetheconditionsunderwhichtriggerstrategiesworktoincreaseplayers’payoffs.Asisstandardingametheory,wewillfocusonsubgame-perfectequilibriaoftherepeatedgames.FinitelyrepeatedgamesFormanystagegames,repeatingthemaknown,finitenumberoftimesdoesnotincreasethepossibilityforcooperation.Toseethispointconcretely,supposethePrisoners’DilemmawererepeatedforTperiods.Usebackwardinductiontosolveforthesubgame-perfectequilibrium.ThelowestsubgameisthePrisoners’DilemmastagegameplayedinperiodT:Regardlessofwhathappenedbefore,theNashequilibriumonthissubgameisforbothtofink.FoldingthegamebacktoperiodT1,triggerstrategiesthatconditionperiod-TplayonwhathappensinperiodT1areruledout.AlthoughaplayermightliketopromisetoplaycooperativelyinperiodTandsorewardtheotherforplayingcooperativelyinperiodT1,wehavejustseenthatnothingthathappensinperiodT1affectswhathappenssubsequentlybecauseplayersbothfinkinperiodTregardless.ItisasifperiodT1werethelast,andtheNashequilibriumofthissubgameisagainforbothtofink.Workingbackwardinthisway,weseethatplayerswillfinkeachperiod;thatis,playerswillsimplyrepeattheNashequilibriumofthestagegameTtimes.ReinhardSelten,winneroftheNobelPrizeineconomicsforhiscontributionstogametheory,showedthatthesamelogicappliesmoregenerallytoanystagegamewithauniqueNashequilibrium.5ThisresultiscalledSelten’stheorem:IfthestagegamehasauniqueNashequilibrium,thentheuniquesubgame-perfectequilibriumofthefinitelyrepeatedgameistoplaytheNashequilibriumeveryperiod.260Part2ChoiceandDemand
IfthestagegamehasmultipleNashequilibria,itmaybepossibletoachievesomecooperationinafinitelyrepeatedgame.Playerscanusetriggerstrategies,sustainingcoopera-tioninearlyperiodsonanoutcomethatisnotanequilibriumofthestagegame,bythreaten-ingtoplayinlaterperiodstheNashequilibriumthatyieldsaworseoutcomefortheplayerwhodeviatesfromcooperation.Example8.7illustrateshowsuchtriggerstrategiesworktosustaincooperation.EXAMPLE8.7CooperationinaFinitelyRepeatedGameThestagegamegiveninnormalforminTable8.10hastwopure-strategyNashequilibria.Inthe“bad”pure-strategyequilibrium,eachplaysBandearnsapayoffof1;inthe“good”equilibrium,eachplaysCandearnsapayoffof3.Playerswouldearnstillmore(i.e.,4)ifbothplayedA,butthisisnotaNashequilibrium.IfoneplaysA,thentheotherwouldprefertodeviatetoBandearn5.Thereisathird,mixed-strategyNashequilibriuminwhicheachplaysBwithprobability3=4andCwithprobability1=4.ThepayoffsaregraphedassolidcirclesinFigure8.9.Ifthestagegameisrepeatedtwice,awealthofnewpossibilitiesariseinsubgame-perfectequilibria.Thesameper-periodpayoffs(1or3)fromthestagegamecanbeobtainedsimplybyrepeatingthepure-strategyNashequilibriafromthestagegametwice.Per-periodaveragepayoffsof2.5canbeobtainedbyalternatingbetweenthegoodandthebadstage-gameequilibria.Amorecooperativeoutcomecanbesustainedwiththefollowingstrategy:beginbyplayingAinthefirstperiod;ifnoonedeviatesfromA,playCinthesecondperiod;ifaplayerdeviatesfromA,thenplayBinthesecondperiod.Backwardinductioncanbeusedtoshowthatthesestrategiesformasubgame-perfectequilibrium.ThestrategiesformaNashequilib-riuminsecond-periodsubgamesbyconstruction.ItremainstocheckwhetherthestrategiesformaNashequilibriumonthegameasawhole.Inequilibriumwiththesestrategies,playersearn4þ3¼7intotalacrossthetwoperiods.BydeviatingtoBinthefirstperiod,aplayercanincreasehisorherfirst-periodpayofffrom4to5,butthisleadstobothplayingBinthesecondperiod,reducingthesecond-periodpayofffrom3to1.Thetotalpayoffacrossthetwoperiodsfromthisdeviationis5þ1¼6,lessthanthe7earnedintheproposedequilibrium.Theaverageper-periodpayoffinthissubgame-perfectequilibriumis7=2¼3.5foreachplayer.Asymmetricequilibriaarealsopossible.Inone,player1beginsbyplayingBandplayer2byplayingA;ifnoonedeviatesthenbothplaythegoodstage-gameNashequilibrium(bothplayC),andifsomeonedeviatesthenbothplaythebadequilibrium(bothplayB).Player2(continued)TABLE8.10StageGameforExample8.7Player2ABCPlayer1A4,40,50,0B5,01,10,0C0,00,03,35R.Selten,“ASimpleModelofImperfectCompetition,Where4AreFewand6AreMany,”InternationalJournalofGameTheory2(1973):141–201.Chapter8StrategyandGameTheory261
EXAMPLE8.7CONTINUEDdoesnotwanttodeviatetoplayingBinthefirstperiodbecauseheorsheearns1fromthisdeviationinthefirstperiodand1inthesecondwhentheyplaythebadequilibriumforatotalof1þ1¼2,whereasheorsheearnsmore,0þ3¼3;inequilibrium.Theaverageper-periodpayoffinthissubgame-perfectequilibriumisð5þ3Þ=2¼4forplayer1and3=2¼1.5forplayer2.Thereversepayoffscanbeobtainedbyreversingthestrategies.Theaverageper-periodpayoffsfromtheadditionalsubgame-perfectequilibriawecomputedforthetwice-repeatedgamearegraphedassquaresinFigure8.9.Ifthegameisrepeatedthreetimes(T¼3),thenadditionalpayoffcombinationsarepossibleinsubgame-perfectequilibria.PlayerscancooperateonplayingAfortwoperiodsandCinthelast,astrategythatissustainedbythethreatofimmediatelymovingtothebadequilibrium(bothplayB)ifanyonedeviatesinthefirsttwoperiods.Thissubgame-perfectequilibriumgiveseachaper-periodaveragepayoffofð4þ4þ3Þ=23:7,morethanthe3.5thatwasthemostbothcouldearnintheT¼2game.AsymmetricequilibriaintheT¼3gameincludethepossibilitythat1playsBand2playsAforthefirsttwoperiodsandthenbothplayC,withthethreatofimmediatelymovingtothebadequilibriumifanyonedeviates.Player1’sper-periodaveragepayoffinthissubgame-perfectequilibriumisð5þ5þ3Þ=34:3,andplayer2’spayoffisð0þ0þ3Þ=3¼1:Thereversestrategiesandpayoffsalsoconstituteapossiblesubgame-perfectequilibrium.Thepayoffsfromtheaddi-tionalsubgame-perfectequilibriaoftheT¼3gamearegraphedastrianglesinFigure8.9.FIGURE8.9Per-PeriodAveragePayoffsinExample8.7SolidcirclesindicatepayoffsinNashequilibriaofthestagegame.Squares(inadditiontocircles)indicateper-periodaveragepayoffsinsubgame-perfectequilibriaforT¼2repetitionsofthestagegame.Triangles(inadditiontocirclesandsquares)indicateper-periodaveragepayoffsforT¼3.54321102345u1u2262Part2ChoiceandDemand
QUERY:Therearemanyothersubgame-perfectequilibriumpayoffsfortherepeatedgamethanareshowninFigure8.9.FortheT¼2game,canyoufindatleasttwoothercombina-tionsofaverageper-periodpayoffsthatcanbeattainedinasubgame-perfectequilibrium?Forcooperationtobesustainedinasubgame-perfectequilibrium,thestagegamemustberepeatedoftenenoughthatthepunishmentfordeviation(repeatedlyplayingtheless-preferredNashequilibrium)issevereenoughtodeterdeviation.ThemorerepetitionsofthestagegameT,themoreseverethepossiblepunishmentandthusthegreaterthelevelofcooperationandthehigherthepayoffsthatcanbesustainedinasubgame-perfectequilib-rium.InExample8.7,themostbothplayerscanearninasubgame-perfectequilibriumincreasesfrom3to3.5toabout3.7asTincreasesfrom1to2to3.Example8.7suggeststhattherangeofsustinablepayoffsinasubgame-perfectequilib-riumexpandsasthenumberofrepetitionsTincreases.Infact,theassociatedFigure8.9understatestheexpansionbecauseitdoesnotgraphallsubgame-perfectequilibriumpayoffsforT¼2andT¼3(theQueryinExample8.7asksyoutofindtwomore,forexample).WearelefttowonderhowmuchthesetofpossibilitiesmightexpandforyethigherT:JeanPierreBenoitandVijayKrishnaanswerthisquestionwiththeirfolktheoremforfinitelyrepeatedgames:6SupposethatthestagegamehasmultipleNashequilibriaandnoplayerearnsaconstantpayoffacrossallequilibria.Anyfeasiblepayoffinthestagegamegreaterthantheplayer’spure-strategyminmaxvaluecanbeapproachedarbitrarilycloselybytheplayer’sper-periodaveragepayoffinsomesubgame-perfectequilibriumofthefinitelyrepeatedgameforlargeenoughT:7Wewillencounterotherfolktheoremsinlatersectionsofthischapter.Generallyspeak-ing,afolktheoremisaresultthat“anythingispossible”inthelimitwithrepeatedgames.Suchresultsarecalled“folk”theoremsbecausetheywereunderstoodinformallyandthuswerepartofthe“folkwisdom”ofgametheorywellbeforeanyonewrotedownformalproofs.Tounderstandthefolktheoremfully,weneedtounderstandwhatfeasiblepayoffsandminmaxvaluesare.Afeasiblepayoffisonethatcanbeachievedbysomemixed-strategyprofileinthestagegame.Graphically,thefeasiblepayoffsetappearsastheconvexhullofthepure-strategystage-gamepayoffs.Theconvexhullofasetofpointsistheborderandinteriorofthelargestpolygonthatcanbeformedbyconnectingthepointswithlinesegments.Forexample,Figure8.10graphsthefeasiblepayoffsetforthestagegamefromExample8.7astheupward-hatchedregion.Toderivethisset,onefirstgraphsthepure-strategypayoffsfromthestagegame.ReferringtothenormalforminTable8.10,thedistinctpure-strategypayoffsare(4,4),(0,5),(0,0),(5,0),(1,1),and(3,3).Theconvexhullisthepolygonformedbylinesegmentsgoingfrom(0,0)to(0,5)to(4,4)to(5,0),andbackto(0,0).Eachpointintheconvexhullcorrespondstotheexpectedpayoffsfromsomecombinationofmixedstrategiesforplayers1and2overactionsA,B,andC:Forexample,thepoint(3,0)ontheboundaryoftheconvexhullcorrespondstoplayers’expectedpayoffsif1playsthemixedstrategy(0,3=5,2=5)and2playsA:Aminmaxvalueistheleastthatplayericanbeforcedtoearn.6J.P.BenoitandV.Krishna,“FinitelyRepeatedGames,”Econometrica53(1985):890–904.7Anadditional,technicalconditionisthatthedimensionofthefeasiblesetofpayoffsmustequalthenumberofplayers.Inthetwo-playergameinExample8.7,thisconditionwouldrequirethefeasiblepayoffsettobearegion(whichisthecase,asshowninFigure8.12)ratherthanalineorapoint.Chapter8StrategyandGameTheory263
DEFINITIONMinmaxvalue.Theminmaxvalueisthefollowingpayoffforplayeri:minsihmaxsiuiðsi,siÞi,(8.19)thatis,thelowestpayoffplayericanbeheldtoifallotherplayersworkagainsthimorherbutplayeriisallowedtochooseabestresponsetothem.InExample8.7,if2playsthemixedstrategy(0,3=4,1=4)thenthemostplayer1canearninthestagegameis3=4(byplayinganymixedstrategyinvolvingonlyactionsBandC).Alittleworkshowsthat3=4isindeedplayer1’sminmaxvalue:anyotherstrategyfor2besides(0,3=4,1=4)wouldallow1toearnahigherpayoffthan3=4.Thefolktheoremforfinitelyrepeatedgamesinvolvesthepure-strategyminmaxvalue—thatis,theminmaxvaluewhenplayersarerestrictedtousingonlypurestrategies.Thepure-strategyminmaxvalueiseasiertocomputethanthegeneralminmaxvalue.Thelowestthatplayer2canhold1toinExample8.7isapayoffof1;player2doesthisbyplayingBandthen1respondsbyplayingB:Figure8.10graphsthepayoffsexceedingbothplayers’pure-strategyminmaxvaluesasthedownward-hatchedregion.Thefolktheoremforfinitelyrepeatedgamesassuresusthatanypayoffsinthecross-hatchedregionofFigure8.10—payoffsthatarefeasibleandabovebothplayers’purestrategyFIGURE8.10FolkTheoremforFinitelyRepeatedGamesinExample8.7ThefeasiblepayoffsforthestagegameinExample8.7areintheupward-hatchedregion;payoffsgreaterthaneachplayer’sminmaxvaluesareinthedownward-hatchedregion.Theirintersection(thecross-hatchedregion)constitutestheper-periodaveragepayoffsthatcanbeapproachedbysomesubgame-perfectequilibriumoftherepeatedgame,accordingtothefolktheoremforfinitelyrepeatedgames.RegionsaresuperimposedontheequilibriumpayoffsfromFigure8.9.54321102345u1u2264Part2ChoiceandDemand
minmaxvalues—canbeapproachedastheper-periodaveragepayoffsinasubgame-perfectequilibriumifthestagegameinExample8.7isrepeatedoftenenough.Payoffs(4,4)canbeapproachedbyhavingplayerscooperateonplayingAforhundredsofperiodsandthenplayingCinthelastperiod(threateningthebadequilibriuminwhichbothplayBifanyonedeviatesfromcooperation).Theaverageofhundredsofpayoffsof4withonepayoffof3comesarbitrarilycloseto4.Therefore,aconsiderableamountofcooperationispossibleifthegameisrepeatedoftenenough.Figure8.10alsoshowsthatmanyoutcomesotherthanfullcooperationarepossibleifthenumberofrepetitions,T,islarge.Althoughsubgame-perfectequilibriumwasselectiveinthesequentialversionoftheBattleoftheSexes,allowingustoselectoneofthreeNashequilibria,weseethatsubgameperfectionmaynotbeselectiveinrepeatedgames.ThefolktheoremstatesthatifthestagegamehasmultipleNashequilibriathenalmostanythingcanhappenintherepeatedgameforTlargeenough.8InfinitelyrepeatedgamesWithfinitelyrepeatedgames,thefolktheoremappliesonlyifthestagegamehasmultipleequilibria.If,likethePrisoners’Dilemma,thestagegamehasonlyoneNashequilibrium,thenSelten’stheoremtellsusthatthefinitelyrepeatedgamehasonlyonesubgame-perfectequilibrium:repeatingthestage-gameNashequilibriumeachperiod.BackwardinductionstartingfromthelastperiodTunravelsanyotheroutcomes.Withinfinitelyrepeatedgames,however,thereisnodefiniteendingperiodTfromwhichtostartbackwardinduction.AfolktheoremwillapplytoinfinitelyrepeatedgameseveniftheunderlyingstagegamehasonlyoneNashequilibrium.Therefore,whilebothplayersfinkeveryperiodintheuniquesubgame-perfectequilibriumofthefinitelyrepeatedPrisoners’Dilemma,playersmayendupcooperating(beingsilent)intheinfinitelyrepeatedversion.Onedifficultywithinfinitelyrepeatedgamesinvolvesaddinguppayoffsacrossperiods.Withfinitelyrepeatedgames,wecouldfocusonaveragepayoffs.Withinfinitelyrepeatedgames,theaverageisnotwell-definedbecauseitinvolvesaninfinitesumofpayoffsdividedbyaninfinitenumberofperiods.Wewillcircumventthisproblemwiththeaidofdiscounting.Letδbethediscountfactor(discussedintheChapter17Appendix)measuringhowmuchapayoffunitisworthifreceivedoneperiodinthefutureratherthantoday.InChapter17weshowthatδisinverselyrelatedtotheinterestrate.Iftheinterestrateishighthenapersonwouldmuchratherreceivepaymenttodaythannextperiodbecauseinvestingtoday’spaymentwouldprovideareturnofprincipalplusalargeinterestpaymentnextperiod.Besidestheinterestrate,δcanalsoincorporateuncertaintyaboutwhetherthegamecontinuesinfutureperiods.Thehighertheprobabilitythatthegameendsafterthecurrentperiod,thelowertheexpectedreturnfromstagegamesthatmightnotactuallybeplayed.Factoringinaprobabilitythattherepeatedgameendsaftereachperiodmakesthesettingofaninfinitelyrepeatedgamemorebelievable.Thecrucialissuewithaninfinitelyrepeatedgameisnotthatitgoesonforeverbutthatitsendisindeterminate.Interpretedinthisway,thereisasenseinwhichinfinitelyrepeatedgamesaremorerealisticthanfinitelyrepeatedgameswithlargeT:Supposeweexpecttwoneighboringgasolinestationstoplayapricinggameeachdayuntilelectriccarsreplacegasoline-poweredones.ItisunlikelythegasolinestationswouldknowthatelectriccarswerecominginexactlyT¼2,000days.Morerealisti-cally,thegasolinestationswillbeuncertainabouttheendofgasoline-poweredcarsandsotheendoftheirpricinggameisindeterminate.8Thefolktheoremforfinitelyrepeatedgamesdoesnotnecessarilycaptureallsubgame-perfectequilibria.InFigure8.12,thepoint(3=4,3=4)liesoutsidethecross-hatchedregion;nonetheless,itcanbeachievedinasubgame-perfectequilibriuminwhich,eachperiod,bothplayersplaytheNashequilibriumofthestagegameinstrictlymixedstrategies.Payoffs(3=4,3=4)areina“grayarea”betweenplayer’spure-strategyandmixed-strategyminmaxvalues.Chapter8StrategyandGameTheory265
Playerscansustaincooperationininfinitelyrepeatedgamesbyusingtriggerstrategies:playerscontinuecooperatingunlesssomeonehasdeviatedfromcooperation,andthisdevia-tiontriggerssomesortofpunishment.Inorderfortriggerstrategiestoformanequilibrium,thepunishmentmustbesevereenoughtodeterdeviation.SupposebothplayersusethefollowingtriggerstrategyinthePrisoners’Dilemma:con-tinuebeingsilentifnoonehasdeviatedbyplayingfink;finkforeverafterwardifanyonehasdeviatedtofinkinthepast.Toshowthatthistriggerstrategyformsasubgame-perfectequilibrium,weneedtocheckthataplayercannotgainfromdeviating.Alongtheequilibriumpath,bothplayersaresilenteveryperiod;thisprovideseachwithapayoffof2everyperiodforapresentdiscountedvalueofVeq¼2þ2δþ2δ2þ2δ3þ…þ2ð1þδþδ2þδ3þ…Þ¼21δ:(8.20)Aplayerwhodeviatesbyfinkingearns3inthatperiod,butthenbothplayersfinkeveryperiodfromthenon—eachearning1perperiodforatotalpresenteddiscountedpayoffofVdev¼3þð1ÞðδÞþð1Þðδ2Þþð1Þðδ3Þþ…þ3þδð1þδþδ2þ…Þ¼3þδ1δ:(8.20)Thetriggerstrategiesformasubgame-perfectequilibriumifVeqVdev;implyingthat21δ3þδ1δ;(8.22)aftermultiplyingthroughby1δandrearranging,weobtainδ1=2:Inotherwords,playerswillfindcontinuedcooperativeplaydesirableprovidedtheydonotdiscountfuturegainsfromsuchcooperationtoohighly.Ifδ<1=2,thennocooperationispossibleintheinfinitelyrepeatedPrisoners’Dilemma;theonlysubgame-perfectequilibriuminvolvesfink-ingeveryperiod.Thetriggerstrategyweconsideredhasplayersreverttothestage-gameNashequilibriumoffinkingeachperiodforever.Thisstrategy,whichinvolvestheharshestpossiblepunishmentfordeviation,iscalledthegrimstrategy.Lessharshpunishmentsincludetheso-calledtit-for-tatstrategy,whichinvolvesonlyoneroundofpunishmentforcheating.Sinceitinvolvestheharshestpunishmentpossible,thegrimstrategyelicitscooperationforthelargestrangeofcases(thelowestvalueofδ)ofanystrategy.Harshpunishmentsworkwellbecause,ifplayerssucceedincooperating,theyneverexperiencethelossesfromthepunishmentinequilibrium.9ThediscountfactorδiscrucialindeterminingwhethertriggerstrategiescansustaincooperationinthePrisoners’Dilemmaor,indeed,inanystagegame.Asδapproaches1,grim-strategypunishmentsbecomeinfinitelyharshbecausetheyinvolveanunendingstreamofundiscountedlosses.Infinitepunishmentscanbeusedtosustainawiderangeofpossibleoutcomes.Thisisthelogicbehindthefolktheoremforinfinitelyrepeatedgames:109NobelPrize–winningeconomistGaryBeckerintroducedarelatedpoint,themaximalpunishmentprincipleforcrime.Theprinciplesaysthatevenminorcrimesshouldreceivedraconianpunishments,whichcandetercrimewithminimalexpenditureonpolicing.Thepunishmentsarecostlesstosocietybecausenocrimesarecommittedinequilibrum,sopunishmentsneverhavetobecarriedout.SeeG.Becker,“CrimeandPunishment:AnEconomicApproach,”JournalofPoliticalEconomy76(1968):169–217.Lessharshpunishmentsmaybesuitableinsettingsinvolvinguncertainty.Forexample,citizensmaynotbecertainaboutthepenalcode;policemaynotbecertaintheyhavearrestedtheguiltyparty.10ThisfolktheoremisduetoD.FudenbergandE.Maskin,“TheFolkTheoreminRepeatedGameswithDiscountingorwithIncompleteInformation,”Econometrica54(1986):533–56.266Part2ChoiceandDemand
Anyfeasiblepayoffinthestagegamegreaterthantheplayer’sminmaxvaluecanbeobtainedastheplayer’snormalizedpayoff(normalizedbymultiplyingby1δ:)insomesubgame-perfectequilibriumoftheinfinitelyrepeatedgameforδcloseenoughto1.11Afewdifferenceswiththefolktheoremforfinitelyrepeatedgamesareworthemphasizing.First,thelimitinvolvesincreasesinδratherthaninthenumberofperiodsT:Thetwolimitsarerelated.Interpretingδascapturingtheprobabilitythatthegamecontinuesintothenextperiod,anincreaseinδincreasestheexpectednumberofperiodsthegameisplayedintotal—similartoanincreaseinTwiththedifferencethatnowtheendofthegameisindefinite.AnotherdifferencebetweenthetwofolktheoremsisthattheoneforinfinitelyrepeatedgamesholdsevenifthestagegamehasjustasingleNashequilibriumwhereasthetheoremforfinitelyrepeatedgamesrequiresthestagegametohavemultipleNashequilibria.Afinaltechnicalityisthatcomparingstage-gamepayoffswiththepresentdiscountedvalueofastreamofpayoffsfromtheinfinitelyrepeatedgameislikecomparingappleswithoranges.Tomakethetwocomparable,we“normalize”thepayofffromtheinfinitelyrepeatedgameviamultiplyingby1δ:Thisnormalizationallowsustothinkofallpayoffsinper-periodtermsforeasycomparison.12FIGURE8.11Folk-TheoremPayoffsintheInfinitelyRepeatedPrisoners'DilemmaFeasiblepayoffsareintheupward-hatchedregion;payoffsgreaterthaneachplayer’sminmaxvaluesareinthedownward-hatchedregion.Theirintersection(thecross-hatchedregion)constitutestheachievablepayoffsaccordingtothefolktheoremforinfinitelyrepeatedgames.3211023u1u211Asinfootnote9,anadditionaltechnicalconditiononthedimensionofthefeasiblepayoffsetisalsorequired.12Forexample,supposeaplayerearns$1atthebeginningofeachperiod.Thepresentdiscountedvalueofthestreamofthese$1payoffsforaninfinitenumberofperiodsis$1þ$1δþ$1δ2þ$1δ3þ…¼$11δ:Multiplyingthroughby1δconvertsthisstreamofpaymentsbackintotheper-periodpayoffof$1.TheChapter17Appendixprovidesmoredetailonthecalculationofpresentdiscountedvaluesofannuitystreams(thoughbewaretheChapter8StrategyandGameTheory267
Figure8.11illustratesthefolktheoremforinfinitelyrepeatedgamesinthecaseofthePrisoners’Dilemma.Thefigureshowstherangeofnormalizedpayoffsthatarepossibleinsomesubgame-perfectequilibriumoftheinfinitelyrepeatedPrisoners’Dilemma.Againweseethatsubgameperfectionmaynotbeparticularlyselectiveincertainrepeatedgames.INCOMPLETEINFORMATIONInthegamesstudiedsofar,playerskneweverythingtherewastoknowaboutthesetupofthegame,includingeachothers’strategysetsandpayoffs.Mattersbecomemorecomplicated,andpotentiallymoreinteresting,ifsomeplayershaveinformationaboutthegamethatothersdonot.Pokerwouldbequitedifferentifallhandswereplayedfaceup.Thefunofplayingpokercomesfromknowingwhatisinyourhandbutnotothers’.Incompleteinformationarisesinmanyotherreal-worldcontextsbesidesparlorgames.Asportsteammaytrytohidetheinjuryofastarplayerfromfutureopponentstopreventthemfromexploitingthisweakness.Firms’productiontechnologiesmaybetradesecrets,andthusfirmsmaynotknowwhethertheyfaceefficientorweakcompetitors.Thissection(andthenexttwo)willintroducethetoolsneededtoanalyzegamesofincompleteinformation.Theanalysisinte-gratesthematerialongametheorydevelopedsofarinthischapterwiththematerialonuncertaintyandinformationfromthepreviouschapter.Gamesofincompleteinformationcanquicklybecomeverycomplicated.Playersthatlackfullinformationaboutthegamewilltrytousewhattheydoknowtomakeinferencesaboutwhattheydonot.Theinferenceprocesscanbequiteinvolved.Inpoker,forexample,knowingwhatisinyourhandcantellyousomethingaboutwhatisinothers’.Aplayerthatholdstwoacesknowsthatothersarelesslikelytoholdacesbecausetwoofthefouracesarenotavailable.Informationonothers’handscanalsocomefromthesizeoftheirbetsorfromtheirfacialexpressions(ofcourse,abigbetmaybeabluffandafacialexpressionmaybefaked).Probabilitytheoryprovidesaformula,calledBayes’rule,formakinginferencesabouthiddeninformation.WewillencounterBayes’ruleinalatersection.TherelevanceofBayes’ruleingamesofincompleteinformationhasledthemtobecalledBayesiangames.Tolimitthecomplexityoftheanalysis,wewillfocusonthesimplestpossiblesettingthroughout.Wewillfocusontwo-playergamesinwhichoneoftheplayers(player1)hasprivateinformationandtheother(player2)doesnot.Theanalysisofgamesofincompleteinformationisdividedintotwosections.Thenextsectionbeginswiththesimplecaseinwhichtheplayersmovesimultaneously.Thesubsequentsectionthenanalyzesgamesinwhichtheinformedplayer1movesfirst.Suchgames,calledsignalinggames,aremorecom-plicatedthansimultaneousgamesbecauseplayer1’sactionmaysignalsomethingabouthisprivateinformationtotheuninformedplayer2.WewillintroduceBayes’ruleatthatpointtohelpanalyzeplayer2’sinferenceaboutplayer1’shiddeninformationbasedonobservationsofplayer1’saction.SIMULTANEOUSBAYESIANGAMESInthissectionwestudyatwo-player,simultaneous-movegameinwhichplayer1hasprivateinformationbutplayer2doesnot.(Wewilluse“he”forplayer1and“she”forplayer2inordertofacilitatetheexposition.)Webeginbystudyinghowtomodelprivateinformation.subtledifferencethatinChapter17theannuitypaymentscomeattheendofeachperiodratherthanatthebeginningasassumedhere).268Part2ChoiceandDemand
PlayertypesandbeliefsJohnHarsanyi,whoreceivedtheNobelPrizeineconomicsforhisworkongameswithincompleteinformation,providedasimplewaytomodelprivateinformationbyintroducingplayercharacteristicsortypes.13Player1canbeoneofanumberofpossiblesuchtypes,denotedt:Player1knowshisowntype.Player2isuncertainabouttandmustdecideonherstrategybasedonbeliefsaboutt:Formally,thegamebeginsataninitialnode,calledachancenode,atwhichaparticularvaluetkisrandomlydrawnforplayer1’stypetfromasetofpossibletypesT¼ft1,…,tk,…,tKg:LetPrðtkÞbetheprobabilityofdrawingtheparticulartypetk:Player1seeswhichtypeisdrawn.Player2doesnotseethedrawandonlyknowstheprobabilities,usingthemtoformherbeliefsaboutplayer1’stype.Thustheprobabilitythatplayer2placesonplayer1’sbeingoftypetkisPrðtkÞ:Sinceplayer1observeshistypetbeforemoving,hisstrategycanbeconditionedont:Conditioningonthisinformationmaybeabigbenefittoaplayer.Inpoker,forexample,thestrongeraplayer’shand,themorelikelytheplayeristowinthepotandthemoreaggressivelytheplayermaywanttobid.Lets1ðtÞbe1’sstrategycontingentonhistype.Sinceplayer2doesnotobservet,herstrategyissimplytheunconditionalone,s2:Aswithgamesofcompleteinformation,players’payoffsdependonstrategies.InBayesiangames,payoffsmayalsodependontypes.Wethereforewriteplayer1’spayoffasu1ðs1ðtÞ,s2,tÞand2’sasu2ðs2,s1ðtÞ,tÞ:Notethattappearsintwoplacesin2’spayofffunction.Player1’stypemayhaveadirecteffecton2’spayoffs.Player1’stypealsohasanindirecteffectthroughitseffecton1’sstrategys1ðtÞ,whichinturnaffects2’spayoffs.Since2’spayoffsdependontinthesetwoways,herbeliefsabouttwillbecrucialinthecalculationofheroptimalstrategy.Table8.11providesasimpleexampleofasimultaneousBayesiangame.Eachplayerchoosesoneoftwoactions.Allpayoffsareknownexceptfor1’spayoffwhen1choosesUand2choosesL:Player1’spayoffinoutcomeðU,LÞisidentifiedashistype,t:Therearetwopossiblevaluesforplayer1’stype,t¼6andt¼0;eachoccurringwithequalprobability.Player1knowshistypebeforemoving.Player2’sbeliefsarethateachtypehasprobability1=2.TheextensiveformisdrawninFigure8.12.Bayesian-NashequilibriumExtendingNashequilibriumtoBayesiangamesrequirestwosmallmattersofinterpretation.First,recallthatplayer1mayplayadifferentactionforeachofhistypes.Equilibriumrequiresthat1’sstrategybeabestresponseforeachandeveryoneofhistypes.Second,recallthatplayer2isuncertainaboutplayer1’stype.Equilibriumrequiresthat2’sstrategymaximizeanexpectedpayoff,wheretheexpectationistakenwithrespecttoherbeliefsabout1’stype.Weencounteredexpectedpayoffsinourdiscussionofmixedstrategies.ThecalculationsinvolvedincomputingthebestresponsetothepurestrategiesofdifferenttypesofrivalsinagameofTABLE8.11SimpleGameofIncompleteInformationPlayer2LRPlayer1Ut,20,0D2,02,4Note:t¼6withprobability1=2andt¼0withprobability1=2.13J.Harsanyi,“GameswithIncompleteInformationPlayedbyBayesianPlayers,”ManagementScience14(1967∕68):159–82,320–34,486–502.Chapter8StrategyandGameTheory269
incompleteinformationaresimilartothecalculationsinvolvedincomputingthebestre-sponsetoarival’smixedstrategyinagameofcompleteinformation.Interpretedinthisway,NashequilibriuminthesettingofaBayesiangameiscalledBayesian-Nashequilibrium.DEFINITIONBayesian-Nashequilibrium.Inatwo-player,simultaneous-movegameinwhichplayer1hasprivateinformation,aBayesian-Nashequilibriumisastrategyprofileðs1ðtÞ,s2Þsuchthats1ðtÞisabestresponsetos2foreachtypet2Tofplayer1,U1ðs1ðtÞ,s2,tÞU1ðs01,s2,tÞforalls012S1,(8.23)andsuchthats2isabestresponsetos1ðtÞgivenplayer2’sbeliefsPrðtkÞaboutplayer1’stypes:Xtk2TPrðtkÞU2ðs2,s1ðtkÞ,tkÞXtk2TPrðtkÞU2ðs02,s1ðtkÞ,tkÞforalls022S2.(8.24)SincethedifferencebetweenNashequilibriumandBayesian-Nashequilibriumisonlyamatterofinterpretation,allourpreviousresultsforNashequilibrium(includingtheexistenceproof)applytoBayesian-Nashequilibriumaswell.FIGURE8.12ExtensiveFormforSimpleGameofIncompleteInformationThisfiguretranslatesTable8.11intoanextensive-formgame.Theinitialchancenodeisindicatedbyanopencircle.Player2’sdecisionnodesareinthesameinformationsetbecauseshedoesnotobserve1’stypeoractionpriortomoving.DDULLLLRRRRU1226, 20, 00, 20, 0Pr=1/2t=6Pr=1/2t=02, 02, 42, 42, 0221270Part2ChoiceandDemand
EXAMPLE8.8Bayesian-NashEquilibriumofGameinFigure8.12TosolvefortheBayesian-NashequilibriumofthegameinFigure8.12,firstsolvefortheinformedplayer’s(player1’s)bestresponsesforeachofhistypes.Ifplayer1isoftypet¼0thenhewouldchooseDratherthanUbecauseheearns0byplayingUand2byplayingDregardlessofwhat2does.Ifplayer1isoftypet¼6,thenhisbestresponseisUto2’splayingLandDtoherplayingR.Thisleavesonlytwopossiblecandidatesforanequilibriuminpurestrategies:1playsðUjt¼6,Djt¼0Þand2playsL;1playsðDjt¼6,Djt¼0Þand2playsR.Thefirstcandidatecannotbeanequilibriumbecause,giventhat1playsðUjt¼6,Djt¼0Þ,2earnsanexpectedpayoffof1fromplayingL:Player2wouldgainbydeviatingtoR,earninganexpectedpayoffof2.ThesecondcandidateisaBayesian-Nashequilibrium.Giventhat2playsR,1’sbestresponseistoplayD,providingapayoffof2ratherthan0regardlessofhistype.Giventhatbothtypesofplayer1playD,player2’sbestresponseistoplayR,providingapayoffof4ratherthan0.QUERY:Iftheprobabilitythatplayer1isoftypet¼6ishighenough,canthefirstcandidatebeaBayesian-Nashequilibrium?Ifso,computethethresholdprobability.EXAMPLE8.9TragedyoftheCommonsasaBayesianGameForanexampleofaBayesiangamewithcontinuousactions,considertheTragedyoftheCommonsinExample8.6butnowsupposethatherder1hasprivateinformationregardinghisvalueofgrazingpersheep:v1ðq1,q2,tÞ¼tðq1þq2Þ,(8.25)where1’stypeist¼130(the“high”type)withprobability2=3andt¼100(the“low”type)withprobability1=3.Herder2’svalueremainsthesameasinEquation8.11.TosolvefortheBayesian-Nashequilibrium,wefirstsolvefortheinformedplayer’s(herder1’s)bestresponsesforeachofhistypes.Foranytypetandrival’sstrategyq2,herder1’svalue-maximizationproblemismaxq1fq1v1ðq1,q2,tÞg¼maxq1fq1ðtq1q2Þg.(8.26)Thefirst-orderconditionforamaximumist2q1q2¼0.(8.27)Rearrangingandthensubstitutingthevaluest¼130andt¼100,weobtainq1H¼65q22andq1L¼50q22,(8.28)whereq1Histhequantityforthe“high”typeofherder1(thatis,thet¼130type)andq1Lforthe“low”type(thet¼130type).Nextwesolvefor2’sbestresponse.Herder2’sexpectedpayoffis23½q2ð120q1Hq2Þþ13½q2ð120q1Lq2Þ¼q2ð120_q1q2Þ,(8.29)(continued)Chapter8StrategyandGameTheory271
EXAMPLE8.9CONTINUEDwhere_q1¼23q1Hþ13q1L.(8.30)Rearrangingthefirst-orderconditionfromthemaximizationofEquation8.29withrespecttoq2givesq2¼60_q12.(8.31)Substitutingforq1Handq1LfromEquation8.28intoEquation8.30andthensubstitutingtheresultingexpressionfor_q1intoEquation8.31yieldsq2¼30þq24,(8.32)implyingthatq2¼40:Substitutingq2¼40backintoEquation8.28impliesq1H¼45andq1L¼30:Figure8.13depictstheBayesian-Nashequilibriumgraphically.Herder2imaginesplayingagainstanaveragetypeofherder1,whoseaveragebestresponseisgivenbythethickdashedline.Theintersectionofthisbestresponseandherder2’satpointBdetermines2’sequilibriumquantity,q2¼40:Thebestresponseofthelow(resp.high)typeofherder1toq2¼40isgivenbypointA(resp.pointC).Forcomparison,thefull-informationNashequilibriaaredrawnwhenherder1isknowntobethelowtype(pointA0)orthehightype(pointC0).QUERY:Supposeherder1isthehightype.Howdoesthenumberofsheepeachherdergrazeschangeasthegamemovesfromincompletetofullinformation(movingfrompointC0FIGURE8.13EquilibriumoftheBayesianTragedyoftheCommonsBestresponsesforherder2andbothtypesofherder1aredrawnasthicksolidlines;theexpectedbestresponseasperceivedby2isdrawnasthethickdashedline.TheBayesian-Nashequilibriumoftheincomplete-informationgameisgivenbypointsAandC;Nashequilibriaofthecorrespondingfull-informationgamesaregivenbypointsA0andC0.High type’s best responseq1q2Low type’s best response2’s best responseC′CBA′A030454040272Part2ChoiceandDemand
toC)?Whatifherder1isthelowtype?Whichtypeprefersfullinformationandthuswouldliketosignalitstype?Whichtypeprefersincompleteinformationandthuswouldliketohideitstype?Wewillstudythepossibilityplayer1cansignalhistypeinthenextsection.SIGNALINGGAMESInthissectionwemovefromsimultaneous-movegamesofprivateinformationtosequentialgamesinwhichtheinformedplayer,1,takesanactionthatisobservableto2before2moves.Player1’sactionprovidesinformation,asignal,that2canusetoupdateherbeliefsabout1’stype,perhapsalteringtheway2wouldplayintheabsenceofsuchinformation.Inpoker,forinstance,player2maytakeabigraisebyplayer1asasignalthathehasagoodhand,perhapsleading2tofold.Afirmconsideringwhethertoenteramarketmaytaketheincumbentfirm’slowpriceasasignalthattheincumbentisalow-costproducerandthusatoughcompetitor,perhapskeepingtheentrantoutofthemarket.Aprestigiouscollegedegreemaysignalthatajobapplicantishighlyskilled.Theanalysisofsignalinggamesismorecomplicatedthansimultaneousgamesbecauseweneedtomodelhowplayer2processestheinformationin1’ssignalandthenupdatesherbeliefsabout1’stype.Tofixideas,wewillfocusonaconcreteapplication:aversionofMichaelSpence’smodelofjob-marketsignaling,forwhichhewonthe2001NobelPrizeineconomics.14Job-marketsignalingPlayer1isaworkerwhocanbeoneoftwotypes,high-skilledðt¼HÞorlow-skilledðt¼LÞ:Player2isafirmthatconsidershiringtheapplicant.Alow-skilledworkeriscompletelyunproductiveandgeneratesnorevenueforthefirm;ahigh-skilledworkergeneratesrevenueπ:Iftheapplicantishired,thefirmmustpaytheworkerw(thinkofthiswageasbeingfixedbygovernmentregulation).Assumeπ>w>0:Therefore,thefirmwishestohiretheapplicantifandonlyifheorsheishigh-skilled.Butthefirmcannotobservetheapplicant’sskill;itcanobserveonlytheapplicant’sprioreducation.LetcHbethehightype’scostofobtaininganeducationandcLthelowtype’s.AssumecH
EXAMPLE8.11CONTINUEDequilibriumandsoseeing1playNEisacompletelyunexpectedevent.PerfectBayesianequilibriumallowsustospecifyanyprobabilitydistributionwelikefortheposteriorbeliefsPrðHjNEÞatnoden3andPrðLjNEÞatnoden4:Player2’spayofffromchoosingNJis0.ForNJtobeabestresponsetoNE,0mustexceed2’sexpectedpayofffromplayingJ:0>PrðHjNEÞðπwÞþPrðLjNEÞðwÞ¼PrðHjNEÞπw,(8.40)wheretheright-handsidefollowsbecausePrðHjNEÞþPrðLjNEÞ¼1:RearrangingyieldsPrðHjNEÞw=π:Insum,inorderfortheretobeapoolingequilibriuminwhichbothtypesofplayer1obtainaneducation,weneedPrðHjNEÞw=πPrðHÞ:Thefirmhastobeoptimisticabouttheproportionofskilledworkersinthepopulation—PrðHÞmustbesufficientlyhigh—andpessimisticabouttheskilllevelofuneducatedworkers—PrðHjNEÞmustbesufficientlylow.Inthisequilibrium,typeLpoolswithtypeHinordertopreventplayer2fromlearninganythingabouttheworker’sskillfromtheeducationsignal.Theotherpossibilityforapoolingequilibriumisforbothtypesofplayer1tochooseNE:Thereareanumberofsuchequilibriadependingonwhatisassumedaboutplayer2’sposteriorbeliefsoutofequilibrium(thatis,2’sbeliefsafteritobserves1choosingE).PerfectBayesianequilibriumdoesnotplaceanyrestrictionsontheseposteriorbeliefs.Problem8.12asksyoutosearchforvariousoftheseequilibriaandintroducesafurtherrefinementofper-fectBayesianequilibrium(theintuitivecriterion)thathelpsruleoutunreasonableout-of-equilibriumbeliefsandthusimplausibleequilibria.QUERY:Returntothepoolingoutcomeinwhichbothtypesofplayer1obtainaneducation.Consider2’sposteriorbeliefsfollowingtheunexpectedeventthataworkershowsupwithnoeducation.PerfectBayesianequilibriumleavesusfreetoassumeanythingwewantabouttheseposteriorbeliefs.Supposeweassumethatthefirmobtainsnoinformationfromthe“noeducation”signalandsomaintainsitspriorbeliefs.Istheproposedpoolingoutcomeanequilibrium?Whatifweassumethatthefirmtakes“noeducation”asabadsignalofskill,believingthat1’stypeisLforcertain?EXAMPLE8.12HybridEquilibriaintheJob-MarketSignalingGameOnepossiblehybridequilibriumisfortypeHalwaystoobtainaneducationandfortypeLtorandomize,sometimespretendingtobeahightypebyobtaininganeducation.TypeLrandomizesbetweenplayingEandNEwithprobabilitieseand1e:Player2’sstrategyistoofferajobtoaneducatedapplicantwithprobabilityjandnottoofferajobtoanuneducatedapplicant.WeneedtosolvefortheequilibriumvaluesofthemixedstrategieseandjandtheposteriorbeliefsPrðHjEÞandPrðHjNEÞthatareconsistentwithperfectBayesianequilib-rium.TheposteriorbeliefsarecomputedusingBayes’rule:PrðHjEÞ¼PrðHÞPrðHÞþePrðLÞ¼PrðHÞPrðHÞþe½1PrðHÞ(8.41)andPrðHjNEÞ¼0:FortypeLofplayer1tobewillingtoplayastrictlymixedstrategy,heorshemustgetthesameexpectedpayofffromplayingE—whichequalsjwcL,given2’smixedstrategy—asfromplayingNE—whichequals0giventhatplayer2doesnotofferajobtouneducatedapplicants.HencejwcL¼0or,solvingforj,j¼cL=w:278Part2ChoiceandDemand
Player2willplayastrictlymixedstrategy(conditionalonobservingE)onlyifitgetsthesameexpectedpayofffromplayingJ,whichequalsPrðHjEÞðπwÞþPrðLjEÞðwÞ¼PrðHjEÞπw,(8.42)asfromplayingNJ,whichequals0.SettingEquation8.42equalto0,substitutingforPrðHjEÞfromEquation8.41,andthensolvingforegivese¼ðπwÞPrðHÞw½1PrðHÞ.(8.43)QUERY:Tocompleteouranalysis:inthisequilibrium,typeHofplayer1cannotprefertodeviatefromE:Isthistrue?Ifso,canyoushowit?HowdoestheprobabilityoftypeLtryingto“pool”withthehightypebyobtaininganeducationvarywithplayer2’spriorbeliefthatplayer1isthehightype?CheapTalkEducationisnothingmorethanacostlydisplayinthejob-marketsignalinggame.Thedisplaymustbecostly—indeed,itmustbemorecostlytothelow-skilledworker—orelsetheskilllevelscouldnotbeseparatedinequilibrium.Whilewedoseesomeinformationcommuni-catedthroughcostlydisplaysintherealworld,mostinformationiscommunicatedsimplybyhavingonepartytalktoanotheratlowornocost(“cheaptalk”).Gametheorycanhelpexplainwhycheaptalkisprevalentbutalsowhycheaptalksometimesfails,forcingpartiestoresorttocostlydisplays.Wewillmodelcheaptalkasatwo-playersignalinggameinwhichplayer1’sstrategyspaceconsistsofmessagessentcostlesslytoplayer2.Thetimingisotherwisethesameasbefore:player1firstlearnshistype(“stateoftheworld”mightbeabetterlabelthan“type”herebecauseplayer1’sprivateinformationwillenterbothplayers’payofffunctionsdirectly),player1communicatesto2,and2takessomeactionaffectingbothplayers’payoffs.Thespaceofmessagesispotentiallylimitless:player1canuseamoreorlesssophisticatedvocabulary,canwriteamoreorlessdetailedmessage,canspeakinanyofthethousandsoflanguagesintheworld,andsoforth.Sothesetofequilibriaisevenlargerthanwouldnormallybethecaseinsignalinggames.WewillanalyzetherangeofpossibleequilibriafromtheleasttothemostinformativeperfectBayesianequilibrium.Themaximumamountofinformationthatcanbecontainedinplayer1’smessagewilldependonhowwell-alignedtheplayers’payofffunctionsare.Player2wouldliketoknowthestateoftheworldbecauseshemighthavedifferentactionsthataresuitableindifferentsituations.Ifplayer1hasthesamepreferencesas2overwhichof2’sactionsarebestineachstateoftheworld,then1haseveryincentivetotell2preciselywhatthestateoftheworldis,and2haseveryreasontobelieve1’sreport.Ontheotherhand,iftheirpreferencesdiverge,then1wouldhaveanincentivetolieaboutthestateoftheworldtoinduce2totaketheactionthat1prefers.Ofcourse,2wouldanticipate1’slyingandwouldrefusetobelievethereport.Aspreferencesdiverge,messagesbecomelessandlessinformative.Inthelimit,1’smessagesarecompletelyuninformative(“babble”);tocommunicaterealinformation,player1wouldhavetoresorttocostlydisplays.Inthejob-marketsignalinggame,forexample,thepreferencesoftheworkerandfirmdivergewhentheworkerislow-skilled.Theworkerwouldliketobehiredandthefirmwouldlikenottohiretheworker.Thehigh-skilledworkermustresorttothecostlydisplay(education)inordertosignalhisorhertype.Thereasonweseerelativelymorecheaptalkthancostlydisplaysintherealworldisprobablybecausepeopletrytoassociatewithotherswithwhomtheysharecommoninterestsandavoidthosewithwhomtheydon’t.Membersofafamily,playersonateam,orco-workerswithinafirmtendtohavethesamegoalsandusuallyhavelittlereasontolietoeachChapter8StrategyandGameTheory279
other.Evenintheseexamples,players’interestsmaynotbecompletelyalignedandsocheaptalkmaynotbecompletelyinformative(thinkaboutteenagerstalkingtoparents).EXAMPLE8.13SimpleCheapTalkGameConsideragamewiththreestatesoftheworld:A,B,andC:Firstplayer1privatelyobservesthestate,then1sendsamessagetoplayer2,andthen2choosesanaction,LorR:Theinterestsofplayers1and2arealignedinstatesAandB:bothagreethat2shouldplayLinstateAandRinstateB:TheirinterestsdivergeinstateC:1prefers2toplayLand2preferstoplayR:AssumethatstatesAandBareequallylikely.LetdbetheprobabilityofstateC:Here,dmeasuresthedivergencebetweenplayers’preferences.Insteadoftheextensiveform,whichiscomplicatedbyhavingthreestatesandanill-definedmessagespaceforplayer1,thegameisrepresentedschematicallybythematricesinTable8.12.Ifd¼0thenplayers’incentivesarecompletelyaligned.Themostinformativeequilibriumresultsinperfectcommunication:1announcesthestatetruthfully;2playsLif1announces“A”andRif1announces“B”.16Ford>0;therecannotbeperfectcommunication.Ifcommunicationwereperfect,thenwhatevermessage1sendswhenthestateisAperfectlyrevealsthestateandsoleads2toplayL:Butthen1wouldhaveanincentivetoliewhenthetruestateisCandwouldthussendthesamemessageaswhenthestateisA:Player1’smessagescanbenomorerefinedthanissuingoneofthetwomessages“thestateiseitherAorC”or“thestateisB”;anyattempttodistinguishbetweenAandCwouldnotbebelieved.Ifthereisnottoomuchdivergencebetweenplayers’interests—inparticular,ifd1=3—thenthereisanequilibriumwithimperfectbutstillinformativecommunication.Inthisequilibrium,player1sendsoneoftwotruthfulmessages:“AorC”or“B.”Thenplayer2playsLconditionalonthemessage“AorC”andRconditionalon“B.”Player2’sexpectedpayofffromplayingLfollowingthemessage“AorC”equalsPrðAj“AorC”Þð1ÞþPrðCj“AorC”Þð0Þ¼PrðAj“AorC”Þ.(8.44)ByBayes’rule,PrðAj“AorC”Þ¼Prð“AorC”jAÞPrðAÞPrð“AorC”jAÞPrðAÞþPrð“AorC”jCÞPrðCÞ¼1d1þd.(8.45)TABLE8.12SimpleCheapTalkGamePlayer2Player1LRStateA1,10,0PrðAÞ¼ð1dÞ=2Player2Player1LRStateB0,01,1PrðBÞ¼ð1dÞ=2Player2Player1LRStateC0,11,0PrðCÞ¼d16Attheotherextreme,ford¼0andindeedforallparameters,thereisalwaysanuninformative“babbling”equilibriuminwhich1’smessagescontainnoinformationand2paysnoattentiontowhat1says.280Part2ChoiceandDemand
ThesecondequalityinEquation8.45holdsuponsubstitutingPrð“AorC”jAÞ¼Prð“AorC”jCÞ¼1(ifthestateisAorC,player1’sstrategyistoannounce“AorC”withcertainty)andsubstitutingthevaluesofPrðAÞandPrðCÞintermsofdfromTable8.12.Player2’sexpectedpayofffromdeviatingtoUcanbeshown(usingcalculationssimilartoEquations8.44and8.45)toequalPrðCj“AorC”Þ¼2d1þd.(8.46)Inequilibrium,Equation8.45mustexceedEquation8.46,implyingthatd1=3:Ifplayers’interestsareyetmoredivergent—inparticular,ifd>1=3—thenthereareonlyuninformative“babbling”equilibria.QUERY:Areplayersbetter-offinmoreinformativeequilibria?Whatdifferencewoulditmakeifplayer1announced“purple”insteadof“AorC”and“yellow”insteadof“B”?Whatfeaturesofalanguagewouldmakeitmoreorlessefficientinacheap-talksetting?EXPERIMENTALGAMESExperimentaleconomicsisarecentbranchofresearchthatexploreshowwelleconomictheorymatchesthebehaviorofexperimentalsubjectsinlaboratorysettings.Themethodsaresimilartothoseusedinexperimentalpsychology—oftenconductedoncampususingunder-graduatesassubjects—althoughexperimentsineconomicstendtoinvolveincentivesintheformofexplicitmonetarypaymentspaidtosubjects.Theimportanceofexperimentaleco-nomicswashighlightedin2002,whenVernonSmithreceivedtheNobelPrizeineconomicsforhispioneeringworkinthefield.Animportantareainthisfieldistheuseofexperimentalmethodstotestgametheory.ExperimentswiththePrisoners’DilemmaTherehavebeenhundredsoftestsofwhetherplayersfinkinthePrisoners’DilemmaaspredictedbyNashequilibriumorwhethertheyplaythecooperativeoutcomeofSilent.Inoneexperiment,subjectsplayedthegame20timeswitheachplayerbeingmatchedwithadifferent,anonymousopponenttoavoidrepeated-gameeffects.PlayconvergedtotheNashequilibriumassubjectsgainedexperiencewiththegame.Playersplayedthecooperativeaction43percentofthetimeinthefirstfiverounds,fallingtoonly20percentofthetimeinthelastfiverounds.17Asistypicalwithexperiments,subjects’behaviortendedtobenoisy.Although80percentofthedecisionswereconsistentwithNash-equilibriumplaybytheendoftheexperiment,still20percentofthemwereanomalous.Evenwhenexperimentalplayisroughlyconsistentwiththepredictionsoftheory,itisrarelyentirelyconsistent.ExperimentswiththeUltimatumGameExperimentaleconomicshasalsotestedtoseewhethersubgame-perfectequilibriumisagoodpredictorofbehaviorinsequentialgames.Inonewidelystudiedsequentialgame,theUltimatumGame,theexperimenterprovidesapotofmoneytotwoplayers.Thefirstmover(Proposer)proposesasplitofthispottothesecondmover.Thesecondmover(Responder)thendecideswhethertoaccepttheoffer,inwhichcaseplayersaregiventheamountofmoneyindicated,orrejecttheoffer,inwhichcasebothplayersgetnothing.Inthesubgame-perfect17R.Cooper,D.V.DeJong,R.Forsythe,andT.W.Ross,“CooperationWithoutReputation:ExperimentalEvidencefromPrisoner’sDilemmaGames,”GamesandEconomicBehavior(February1996):187–218.Chapter8StrategyandGameTheory281
equilibrium,theProposeroffersaminimalshareofthepotandthisisacceptedbytheResponder.Onecanseethisbyapplyingbackwardinduction:theRespondershouldacceptanypositivedivisionnomatterhowsmall;knowingthis,theProposershouldoffertheResponderonlyaminimalshare.Inexperiments,thedivisiontendstobemuchmoreeventhaninthesubgame-perfectequilibrium.18Themostcommonofferisa50–50split.Responderstendtorejectoffersgivingthemlessthan30percentofthepot.Thisresultisobservedevenwhenthepotisashighas$100,sothatrejectinga30percentoffermeansturningdown$30.Someeconomistshavesuggestedthatthemoneyplayersreceivemaynotbeatruemeasureoftheirpayoffs.Theymaycareaboutotherfactorssuchasfairnessandsoobtainabenefitfromamoreequaldivisionofthepot.EvenifaProposerdoesnotcaredirectlyaboutfairness,thefearthattheRespondermaycareaboutfairnessandthusmightrejectanunevenofferoutofspitemayleadtheProposertoproposeanevensplit.ThedepartureofexperimentalbehaviorfromthepredictionsofgametheorywastoosystematicintheUltimatumGametobeattributedtonoisyplay,leadingsomegametheoriststorethinkthetheoryandaddanexplicitconsiderationforfairness.19ExperimentswiththeDictatorGameTotestwhetherplayerscaredirectlyaboutfairnessoractoutoffearoftheotherplayer’sspite,researchersexperimentedwitharelatedgame,theDictatorGame.IntheDictatorGame,theProposerchoosesasplitofthepot,andthissplitisimplementedwithoutinputfromtheResponder.ProposerstendtoofferalessevensplitthanintheUltimatumGamebutstilloffertheRespondersomeofthepot,suggestingthatRespondershavesomeresidualconcernforfairness.Thedetailsoftheexperimentaldesignarecrucial,however,asoneingeniousexperimentshowed.20TheexperimentwasdesignedsothattheexperimenterwouldneverlearnwhichProposershadmadewhichoffers.Withthiselementofanonymity,ProposersalmostnevergaveanequalsplittoRespondersandindeedtookthewholepotforthemselvestwothirdsofthetime.Proposersseemtocaremoreaboutappearingfairtotheexperimenterthantrulybeingfair.EVOLUTIONARYGAMESANDLEARNINGThefrontierofgame-theoryresearchregardswhetherandhowplayerscometoplayaNashequilibrium.Hyperrationalplayersmaydeduceeachothers’strategiesandinstantlysettleupontheNashequilibrium.HowcantheyinstantlycoordinateonasingleoutcomewhentherearemultipleNashequilibria?Whatoutcomewouldreal-worldplayers,forwhomhyper-rationaldeductionsmaybetoocomplex,settleon?Gametheoristshavetriedtomodelthedynamicprocessbywhichanequilibriumemergesoverthelongrunfromtheplayofalargepopulationofagentswhomeetothersatrandomandplayapairwisegame.GametheoristsanalyzewhetherplayconvergestoNashequilib-riumorsomeotheroutcome,whichNashequilibrium(ifany)isconvergedtoiftherearemultipleequilibria,andhowlongsuchconvergencetakes.Twomodels,whichmakevaryingassumptionsaboutthelevelofplayers’rationality,havebeenmostwidelystudied:anevolutionarymodelandalearningmodel.18ForareviewofUltimatumGameexperimentsandatextbooktreatmentofexperimentaleconomicsmoregenerally,seeD.D.DavisandC.A.Holt,ExperimentalEconomics(Princeton,NJ:PrincetonUniversityPress,1993).19See,forexample,M.Rabin,“IncorporatingFairnessintoGameTheoryandEconomics,”AmericanEconomicReview(December1993):1281–1302.20E.Hoffman,K.McCabe,K.Shachat,andV.Smith,“Preferences,PropertyRights,andAnonymityinBargainingGames,”GamesandEconomicBehavior(November1994):346–80.282Part2ChoiceandDemand
Intheevolutionarymodel,playersdonotmakerationaldecisions;instead,theyplaythewaytheyaregeneticallyprogrammed.Themoresuccessfulaplayer’sstrategyinthepopu-lation,themorefitistheplayerandthemorelikelywilltheplayersurvivetopassitsgenesontofuturegenerationsandsothemorelikelythestrategyspreadsinthepopulation.EvolutionarymodelswereinitiallydevelopedbyJohnMaynardSmithandotherbiolo-giststoexplaintheevolutionofsuchanimalbehaviorashowhardalionfightstowinamateoranantfightstodefenditscolony.Whileitmaybemoreofastretchtoapplyevolutionarymodelstohumans,evolutionarymodelsprovideaconvenientwayofanalyzingpopulationdynamicsandmayhavesomedirectbearingonhowsocialconventionsarepasseddown,perhapsthroughculture.Inalearningmodel,playersareagainmatchedatrandomwithothersfromalargepopulation.Playersusetheirexperiencesofpayoffsfrompastplaytoteachthemhowothersareplayingandhowtheythemselvescanbestrespond.Playersusuallyareassumedtohaveadegreeofrationalityinthattheycanchooseastaticbestresponsegiventheirbeliefs,maydosomeexperimenting,andwillupdatetheirbeliefsaccordingtosomereasonablerule.Playersarenotfullyrationalinthattheydonotdistorttheirstrategiesinordertoaffectothers’learningandthusfutureplay.Gametheoristshaveinvestigatedwhethermore-orless-sophisticatedlearningstrategiesconvergemoreorlessquicklytoaNashequilibrium.Currentresearchseekstointegratetheorywithexperimentalstudy,tryingtoidentifythespecificalgorithmsthatreal-worldsubjectsusewhentheylearntoplaygames.SUMMARYThischapterprovidedastructuredwaytothinkaboutstra-tegicsituations.Wefocusedonthemostimportantsolutionconceptusedingametheory,Nashequilibrium.Wethenprogressedtoseveralmore-refinedsolutionconceptsthatareinstandarduseingametheoryinmorecomplicatedsettings(withsequentialmovesandincompleteinformation).Someoftheprincipalresultsareasfollows.•Allgameshavethesamebasiccomponents:players,strat-egies,payoffs,andaninformationstructure.•Gamescanbewrittendowninnormalform(providingapayoffmatrixorpayofffunctions)orextensiveform(providingagametree).•Strategiescanbesimpleactions,morecomplicatedplanscontingentonothers’actions,orevenprobabilitydis-tributionsoversimpleactions(mixedstrategies).•ANashequilibriumisasetofstrategies,oneforeachplayer,thataremutualbestresponses.Inotherwords,aplayer’sstrategyinaNashequilibriumisoptimalgiventhatallothersplaytheirequilibriumstrategies.•ANashequilibriumalwaysexistsinfinitegames(inmixedifnotpurestrategies).•Subgame-perfectequilibriumisarefinementofNashequilibriumthathelpstoruleoutequilibriainsequentialgamesinvolvingnoncrediblethreats.•Repeatingastagegamealargenumberoftimesintro-ducesthepossibilityofusingpunishmentstrategiestoattainhigherpayoffsthanifthestagegameisplayedonce.Ifafinitegamewithmultiplestagesisrepeatedoftenenoughorifplayersaresufficientlypatientinaninfinitelyrepeatedgame,thenafolktheoremholdsimplyingthatessentiallyanypayoffsarepossibleintherepeatedgame.•Ingamesofprivateinformation,oneplayerknowsmoreabouthisorher“type”thananother.Playersmaximizetheirexpectedpayoffsgivenknowledgeoftheirowntypeandbeliefsabouttheothers’.•InaperfectBayesianequilibriumofasignalinggame,thesecondmoverusesBayes’ruletoupdatehisorherbeliefsaboutthefirstmover’stypeafterobservingthefirstmover’saction.•Thefrontierofgame-theoryresearchcombinestheorywithexperimentstodeterminewhetherplayerswhomaynotbehyperrationalcometoplayaNashequilibrium,whichparticularequilibrium(iftherearemorethanone),andwhatpathleadstotheequilibrium.Chapter8StrategyandGameTheory283
PROBLEMS8.1Considerthefollowinggame:a.Findthepure-strategyNashequilibria(ifany).b.Findthemixed-strategyNashequilibriuminwhicheachplayerrandomizesoverjustthefirsttwoactions.c.Computeplayers’expectedpayoffsintheequilibriafoundinparts(a)and(b).d.Drawtheextensiveformforthisgame.8.2Themixed-strategyNashequilibriumintheBattleoftheSexesinTable8.3maydependonthenumericalvaluesforthepayoffs.Togeneralizethissolution,assumethatthepayoffmatrixforthegameisgivenbywhereK1:Showhowthemixed-strategyNashequilibriumdependsonthevalueofK:8.3ThegameofChickenisplayedbytwomachoteenswhospeedtowardeachotheronasingle-laneroad.Thefirsttoveeroffisbrandedthechicken,whereastheonewhodoesn’tveergainspeer-groupesteem.Ofcourse,ifneitherveers,bothdieintheresultingcrash.PayoffstotheChickengameareprovidedinthefollowingtable.Player2DEFPlayer1A7,65,80,0B5,87,61,1C0,01,14,4Player2(Husband)BalletBoxingPlayer1ðWifeÞBalletK,10,0Boxing0,01,KTeen2VeerDon’tveerTeen1Veer2,21,3Don’tveer3,10,0284Part2ChoiceandDemand
a.Drawtheextensiveform.b.Findthepure-strategyNashequilibriumorequilibria.c.Computethemixed-strategyNashequilibrium.Aspartofyouranswer,drawthebest-responsefunctiondiagramforthemixedstrategies.d.Supposethegameisplayedsequentially,withteenAmovingfirstandcommittingtothisactionbythrowingawaythesteeringwheel.WhatareteenB’scontingentstrategies?Writedownthenormalandextensiveformsforthesequentialversionofthegame.e.Usingthenormalformforthesequentialversionofthegame,solvefortheNashequilibria.f.Identifythepropersubgamesintheextensiveformforthesequentialversionofthegame.Usebackwardinductiontosolveforthesubgame-perfectequilibrium.ExplainwhytheotherNashequilibriaofthesequentialgameare“unreasonable.”8.4Twoneighboringhomeowners,i¼1,2,simultaneouslychoosehowmanyhourslitospendmain-tainingabeautifullawn.Theaveragebenefitperhouris10liþlj2,andthe(opportunity)costperhourforeachis4.Homeowneri’saveragebenefitisincreasinginthehoursneighborjspendsonhisownlawn,sincetheappearanceofone’spropertydependsinpartonthebeautyofthesurroundingneighborhood.a.ComputetheNashequilibrium.b.Graphthebest-responsefunctionsandindicatetheNashequilibriumonthegraph.c.Onthegraph,showhowtheequilibriumwouldchangeiftheinterceptofoneoftheneighbor’saveragebenefitfunctionsfellfrom6tosomesmallernumber.8.5TheAcademyAward–winningmovieABeautifulMindaboutthelifeofJohnNashdramatizesNash’sscholarlycontributioninasinglescene:hisequilibriumconceptdawnsonhimwhileinabarbanteringwithhisfellowmalegraduatestudents.Theynoticeseveralwomen,oneblondandtherestbrunette,andagreethattheblondismoredesirablethanthebrunettes.TheNashcharacterviewsthesituationasagameamongthemalegraduatestudents,alongthefollowinglines.Supposetherearenmaleswhosimultaneouslyapproacheithertheblondoroneofthebrunettes.Ifmaleialoneapproachestheblond,thenheissuccessfulingettingadatewithherandearnspayoffa:Ifoneormoreothermalesapproachtheblondalongwithi,thecompetitioncausesthemalltoloseher,andi(aswellastheotherswhoapproachedher)earnsapayoffofzero.Ontheotherhand,maleiearnsapayoffofb>0fromapproachingabrunette,sincetherearemorebrunettesthanmales,soiiscertaintogetadatewithabrunette.Thedesirabilityoftheblondimpliesa>b:a.Arguethatthisgamedoesnothaveasymmetricpure-strategyNashequilibrium.b.Solveforthesymmetricmixed-strategyequilibrium.Thatis,lettingpbetheprobabilitythatamaleapproachestheblond,findp.c.Showthatthemoremalesthereare,thelesslikelyitisintheequilibriumfrompart(b)thattheblondisapproachedbyatleastoneofthem.Note:ThisparadoxicalresultwasnotedbyS.AndersonandM.Engersin“ParticipationGames:MarketEntry,Coordination,andtheBeautifulBlond,”JournalofEconomicBehavior&Organization63(2007):120–37.Chapter8StrategyandGameTheory285
8.6Considerthefollowingstagegame.a.Computeaplayer’sminmaxvalueiftherivalisrestrictedtopurestrategies.Isthisminmaxvaluedifferentthaniftherivalisallowedtousemixedstrategies?b.Supposethestagegameisplayedtwice.Characterizethesubgame-perfectequilibriumprovid-ingthehighesttotalpayoffs.c.Drawagraphofthesetoffeasibleper-periodpayoffsinthelimitinafinitelyrepeatedgameaccordingtothefolktheorem.8.7ReturntothegamewithtwoneighborsinProblem8.5.Continuetosupposethatplayeri’saveragebenefitperhourofworkonlandscapingis10liþlj2.Continuetosupposethatplayer2’sopportunitycostofanhouroflandscapingworkis4.Supposethat1’sopportunitycostiseither3or5withequalprobabilityandthatthiscostis1’sprivateinformation.a.SolvefortheBayesian-Nashequilibrium.b.IndicatetheBayesian-Nashequilibriumonabest-responsefunctiondiagram.c.Whichtypeofplayer1wouldliketosendatruthfulsignalto2ifitcould?Whichtypewouldliketohideitsprivateinformation?8.8InBlindTexanPoker,player2drawsacardfromastandarddeckandplacesitagainstherforeheadwithoutlookingatitbutsoplayer1canseeit.Player1movesfirst,decidingwhethertostayorfold.Ifplayer1folds,hemustpayplayer2$50.Ifplayer1stays,theactiongoestoplayer2.Player2canfoldorcall.Ifplayer2folds,shemustpayplayer1$50.If2calls,thecardisexamined.Ifitisalowcard(2through8),player2paysplayer1$100.Ifitisahighcard(9,10,jack,queen,king,orace),player1paysplayer2$100.a.Drawtheextensiveformforthegame.b.Solveforthehybridequilibrium.c.Computetheplayers’expectedpayoffs.Player2ABCPlayer1A10,101,151,12B15,10,01,1C12,11,18,8286Part2ChoiceandDemand
AnalyticalProblems8.9DominantstrategiesProvethatanequilibriumindominantstrategiesistheuniqueNashequilibrium.8.10RottenKidTheoremInATreatiseontheFamily(Cambridge,MA:HarvardUniversityPress,1981),NobellaureateGaryBeckerproposeshisfamousRottenKidTheoremasasequentialgamebetweenthepotentiallyrottenchild(player1)andthechild’sparent(player2).Thechildmovesfirst,choosinganactionrthataffectshisownincomeY1ðrÞ½Y01ðrÞ>0andtheincomeoftheparentY2ðrÞ½Y02ðrÞ<0:Later,theparentmoves,leavingamonetarybequestLtothechild.Thechildcaresonlyforhisownutility,U1ðY1þLÞ,buttheparentmaximizesU2ðY2LÞþαU1,whereα>0reflectstheparent’saltruismtowardthechild.Provethat,inasubgame-perfectequilibrium,thechildwilloptforthevalueofrthatmaximizesY1þY2eventhoughhehasnoaltruisticintentions.Hint:Applybackwardinductiontotheparent’sproblemfirst,whichwillgiveafirst-orderconditionthatimplicitlydeterminesL;althoughanexplicitsolutionforLcannotbefound,thederivativeofLwithrespecttor—requiredinthechild’sfirst-stageoptimizationproblem—canbefoundusingtheimplicitfunctionrule.8.11AlternativestoGrimStrategySupposethatthePrisoners’Dilemmastagegame(seeTable8.1)isrepeatedforinfinitelymanyperiods.a.Canplayerssupportthecooperativeoutcomebyusingtit-for-tatstrategies,punishingdeviationinapastperiodbyrevertingtothestage-gameNashequilibriumforjustoneperiodandthenreturningtocooperation?Aretwoperiodsofpunishmentenough?b.Supposeplayersusestrategiesthatpunishdeviationfromcooperationbyrevertingtothestage-gameNashequilibriumfortenperiodsbeforereturningtocooperation.Computethethresholddiscountfactorabovewhichcooperationispossibleontheoutcomethatmaximizesthejointpayoffs.8.12RefinementsofperfectBayesianequilibriumRecallthejob-marketsignalinggameinExample8.11.a.Findtheconditionsunderwhichthereisapoolingequilibriumwherebothtypesofworkerchoosenottoobtainaneducation(NE)andwherethefirmoffersanuneducatedworkerajob.Besuretospecifybeliefsaswellasstrategies.b.Findtheconditionsunderwhichthereisapoolingequilibriumwherebothtypesofworkerchoosenottoobtainaneducation(NE)andwherethefirmdoesnotofferanuneducatedworkerajob.Whatisthelowestposteriorbeliefthattheworkerislow-skilledconditionalonobtaininganeducationconsistentwiththispoolingequilibrium?Whyisitmorenaturaltothinkthatalow-skilledworkerwouldneverdeviatetoEandsoaneducatedworkermustbehigh-skilled?ChoandKreps’sintuitivecriterionisoneofaseriesofcomplicatedrefinementsofperfectBayesianequilibriumthatruleoutequilibriabasedonunreasonableposteriorbeliefsasidentifiedinthispart;seeI.K.ChoandD.M.Kreps,“SignallingGamesandStableEquilibria,”QuarterlyJournalofEconomics102(1987):179–221.SUGGESTIONSFORFURTHERREADINGFudenberg,D.,andJ.Tirole.GameTheory.Cambridge,MA:MITPress,1991.Acomprehensivesurveyofgametheoryatthegraduate-studentlevel,thoughselectedsectionsareaccessibletoadvancedundergraduates.Holt,C.A.Markets,Games,&StrategicBehavior.Boston:Pearson,2007.Anundergraduatetextwithemphasisonexperimentalgames.Rasmusen,E.GamesandInformation,4thed.Malden,MA:Blackwell,2007.Anadvancedundergraduatetextwithmanyreal-worldapplications.Watson,Joel.Strategy:AnIntroductiontoGameTheory.NewYork:Norton,2002.Anundergraduatetextthatbalancesrigorwithsimpleexamples(often22games).Emphasisonbargainingandcontractingexamples.Chapter8StrategyandGameTheory287
EXTENSIONSExistenceofNashEquilibriumThissectionwillsketchJohnNash’soriginalproofthatallfinitegameshaveatleastoneNashequilibrium(inmixedifnotinpurestrategies).Wewillprovidesomeofthedetailsoftheproofhere;theoriginalproofisinNash(1950),andacleartextbookpresentationofthefullproofisprovidedinFudenbergandTirole(1991).Thesectionconcludesbymentioningarelatedexis-tencetheoremforgameswithcontinuousactions.Nash’sproofissimilartotheproofoftheexistenceofageneralcompetitiveequilibriuminChapter13.Bothproofsrelyonafixedpointtheorem.TheproofoftheexistenceofNashequilibriumrequiresaslightlymorepowerfultheorem.InsteadofBrouwer’sfixedpointtheorem,whichappliestofunctions,Nash’sproofreliesonKakutani’sfixedpointtheorem,whichappliestocorrespondences—moregeneralmappingsthanfunctions.E8.1CorrespondencesversusfunctionsAfunctionmapseachpointinafirstsettoasinglepointinasecondset.Acorrespondencemapsasinglepointinthefirstsettopossiblymanypointsinthesecondset.FigureE8.1illustratesthedifference.FIGUREE8.1ComparisionofFunctionsandCorrespondencesThefunctiongraphedin(a)lookslikeafamiliarcurve.Eachvalueofxismappedintoasinglevalueofy.Withthecorrespondencegraphedin(b),eachvalueofxmaybemappedintomanyvaluesofy.Correspondencescanthushavebulgesasshownbythegrayregionsin(b).(a) Function(b) Correspondenceyxyx288Part2ChoiceandDemand
Anexampleofacorrespondencethatwehavealreadyseenisthebestresponse,BRiðsiÞ:Thebestresponseneednotmapotherplayers’strategiessiintoasinglestrategythatisabestresponseforplayeri:Theremaybetiesamongseveralbestresponses.AsshowninFigure8.3,intheBattleoftheSexes,thehusband’sbestresponsetothewife’splayingthemixedstrategyofgoingtoballetwithprobability2=3andboxingwithprobability1=3(orjustw¼2=3forshort)isnotjustasinglepointbutthewholeintervalofpossiblemixedstrategies.Boththehusband’sandthewife’sbestresponsesinthisfigurearecorrespon-dences,notfunctions.ThereasonNashneededafixedpointtheoremin-volvingcorrespondencesratherthanjustfunctionsispreciselybecausehisproofworkswithplayers’bestresponsestoproveexistence.E8.2Kakutani’sfixedpointtheoremHereisthestatementofKakutani’sfixedpointtheorem:Anyconvex,upper-semicontinuouscorrrespondence½fðxÞfromaclosed,bounded,convexsetintoitselfhasatleastonefixedpointðxÞsuchthatx2fðxÞ:ComparingthestatementofKakutani’sfixedpointtheoremwithBrouwer’sinChapter13,theyaresimilarexceptforthesubstitutionof“correspondence”for“function”andfortheconditionsonthecorrespon-dence.Brouwer’stheoremrequiresthefunctiontobecontinuous;Kakutani’stheoremrequiresthecorre-spondencetobeconvexanduppersemicontinuous.Theseproperties,whicharerelatedtocontinuity,arelessfamiliarandworthspendingamomenttounderstand.FigureE8.2providesexamplesofcorre-spondencesviolating(a)convexityand(b)uppersemi-continuity.Thefigureshowswhythetwopropertiesareneededtoguaranteeafixedpoint.Withoutbothproperties,thecorrespondencecan“jump”acrossthe45°lineandsofailtohaveafixedpoint—thatis,apointforwhichx¼fðxÞ:E8.3Nash’sproofWeuseRðsÞtodenotethecorrespondencethatunder-liesNash’sexistenceproof.Thiscorrespondencetakesanyprofileofplayers’strategiess¼ðs1,s2,…,snÞ(pos-siblymixed)andmapsitintoanothermixedstrategyprofile,theprofileofbestresponses:RðsÞ¼ðBR1ðs1Þ,BR2ðs2Þ,…,BRnðsnÞÞ.(i)Afixedpointofthecorrespondenceisastrategyforwhichs2RðsÞ;thisisaNashequilibriumbecauseeachplayer’sstrategyisabestresponsetoothers’strategies.TheproofchecksthatalltheconditionsinvolvedinKakutani’sfixedpointtheoremaresatisfiedbythebest-responsecorrespondenceRðsÞ:First,weneedtoshowthatthesetofmixed-strategyprofilesisclosed,bounded,andconvex.Sinceastrategyprofileisjustalistofindividualstrategies,thesetofstrategyprofileswillbeclosed,bounded,andconvexifeachplayer’sstrategysetSihasthesepropertiesindividually.AsFigureE8.3showsforthecaseoftwoandthreeactions,thesetofmixedstrategiesoveractionshasasimpleshape.1Thesetisclosed(containsitsbound-ary),bounded(doesnotgoofftoinfinityinanydirec-tion),andconvex(thesegmentbetweenanytwopointsinthesetisalsointheset).Wethenneedtocheckthatthebest-responsecorrespondenceRðsÞisconvex.Individualbestre-sponsescannotlooklike(a)inFigureE8.2,becauseifanytwomixedstrategiessuchasAandBarebestresponsestoothers’strategiesthenmixedstrategiesbetweenthemmustalsobebestresponses.Forexam-ple,intheBattleoftheSexes,if(1=3,2=3)and(2=3,1=3)arebestresponsesforthehusbandagainsthiswife’splaying(2=3,1=3)(where,ineachpair,thefirstnumberistheprobabilityofplayingballetandthesecondofplayingboxing),thenmixedstrategiesbe-tweenthetwosuchas(1=2,1=2)mustalsobebestresponsesforhim.Figure8.3showedthatinfactallpossiblemixedstrategiesforthehusbandarebestresponsestothewife’splaying(2=3,1=3).Finally,weneedtocheckthatRðsÞisuppersemi-continuous.Individualbestresponsescannotlooklike(b)inFigureE8.2.TheycannothaveholeslikepointDpunchedoutofthembecausepayofffunc-tionsuiðsi,siÞarecontinuous.Recallthatpayoffs,whenwrittenasfunctionsofmixedstrategies,areactuallyexpectedvalueswithprobabilitiesgivenbythestrategiessiandsi:AsEquation2.176showed,expectedvaluesarelinearfunctionsoftheunderlyingprobabilities.Linearfunctionsareofcoursecontinuous.1Mathematiciansstudythemsofrequentlythattheyhaveaspecialnameforsuchaset:asimplex.Chapter8StrategyandGameTheory289
FIGUREE8.2Kakutani’sConditionsonCorrespondencesThecorrespondencein(a)isnotconvexbecausethedashedverticalsegmentbetweenAandBisnotinsidethecorrespondence.Thecorrespondencein(b)isnotuppersemicontinuousbecausethereisapath(C)insidethecorrespondenceleadingtoapoint(D)that,asindicatedbytheopencircle,isnotinsidethecorrespondence.Both(a)and(b)failtohavefixedpoints.(b) Correspondence that is not upper semicontinuous1D45°(a) Correspondence that is not convexf(x)11xf(x)xBA45°C290Part2ChoiceandDemand
E8.4GameswithcontinuousactionsNash’sexistencetheoremappliestofinitegames—thatis,gameswithafinitenumberofplayersandactionsperplayer.Nash’stheoremdoesnotapplytogames,suchastheTragedyoftheCommonsinEx-ample8.6,thatfeaturecontinuousactions.IsaNashequilibriumguaranteedtoexistforthesegames,too?Glicksberg(1952)provedthattheansweris“yes”aslongaspayofffunctionsarecontinuous.ReferencesFudenberg,D.,andJ.Tirole.GameTheory.Cambridge,MA:MITPress,1991,sec.1.3.Glicksberg,I.L.“AFurtherGeneralizationoftheKakutaniFixedPointTheoremwithApplicationtoNashEquilib-riumPoints.”ProceedingsoftheNationalAcademyofSciences38(1952):170–74.Nash,John.“EquilibriumPointsinn-PersonGames.”ProceedingsoftheNationalAcademyofSciences36(1950):48–49.FIGUREE8.3SetofMixedStrategiesforanIndividualPlayer1’ssetofpossiblemixedstrategiesovertwoactionsisgivenbythediagonallinesegmentin(a).Thesetforthreeactionsisgivenbytheshadedtriangleonthethree-dimensionalgraphin(b).(a) Two actions(b) Three actions101111p11p11p12p12p130Chapter8StrategyandGameTheory291
This page intentionally left blank
PART3ProductionandSupplyCHAPTER9ProductionFunctionsCHAPTER10CostFunctionsCHAPTER11ProfitMaximizationInthispartweexaminetheproductionandsupplyofeconomicgoods.Institutionsthatcoordinatethetransformationofinputsintooutputsarecalledfirms.Theymaybelargeinstitutions(suchasMicrosoft,Sony,ortheU.S.DepartmentofDefense)orsmallones(suchas“MomandPop”storesorself-employedindividuals).Althoughtheymaypursuedifferentgoals(Microsoftmayseekmaximumprofits,whereasanIsraelikibbutzmaytrytomakemembersofthekibbutzaswelloffaspossible),allfirmsmustmakecertainbasicchoicesintheproductionprocess.ThepurposeofPart3istodevelopsometoolsforanalyzingthosechoices.InChapter9weexaminewaysofmodelingthephysicalrelationshipbetweeninputsandoutputs.Weintroducetheconceptofaproductionfunction,ausefulabstractionfromthecomplexitiesofreal-worldproductionprocesses.Twomeasurableaspectsoftheproductionfunctionarestressed:itsreturnstoscale(thatis,howoutputexpandswhenallinputsareincreased)anditselasticityofsubstitution(thatis,howeasilyoneinputmaybereplacedbyanotherwhilemaintainingthesamelevelofoutput).Wealsobrieflydescribehowtechnicalimprovementsarereflectedinproductionfunctions.TheproductionfunctionconceptisthenusedinChapter10todiscusscostsofproduction.Weassumethatallfirmsseektoproducetheiroutputatthelowestpossiblecost,anassumptionthatpermitsthedevel-opmentofcostfunctionsforthefirm.Chapter10alsofocusesonhowcostsmaydifferbetweentheshortrunandthelongrun.InChapter11weinvestigatethefirm’ssupplydecision.Todoso,weassumethatthefirm’smanagerwillmakeinputandoutputchoicessoastomaximizeprofits.Thechapterconcludeswiththefundamentalmodelofsupplybehaviorbyprofit-maximizingfirmsthatwewilluseinmanysubsequentchapters.293
This page intentionally left blank
CHAPTER9ProductionFunctionsTheprincipalactivityofanyfirmistoturninputsintooutputs.Becauseeconomistsareinterestedinthechoicesthefirmmakesinaccomplishingthisgoal,butwishtoavoiddiscussingmanyoftheengineeringintricaciesinvolved,theyhavechosentoconstructanabstractmodelofproduction.Inthismodeltherelationshipbetweeninputsandoutputsisformalizedbyaproductionfunctionoftheformq¼fðk,l,m,…Þ,(9.1)whereqrepresentsthefirm’soutputofaparticulargoodduringaperiod,1krepresentsthemachine(thatis,capital)usageduringtheperiod,lrepresentshoursoflaborinput,mrepresentsrawmaterialsused,2andthenotationindicatesthepossibilityofothervariablesaffectingtheproductionprocess.Equation9.1isassumedtoprovide,foranyconceivablesetofinputs,theengineer’ssolutiontotheproblemofhowbesttocombinethoseinputstogetoutput.MARGINALPRODUCTIVITYInthissectionwelookatthechangeinoutputbroughtaboutbyachangeinoneoftheproductiveinputs.Forthepurposesofthisexamination(andindeedformostofthepurposesofthisbook),itwillbemoreconvenienttouseasimplifiedproductionfunctiondefinedasfollows.DEFINITIONProductionfunction.Thefirm’sproductionfunctionforaparticulargood,q,q¼fðk,lÞ,(9.2)showsthemaximumamountofthegoodthatcanbeproducedusingalternativecom-binationsofcapitalðkÞandlaborðlÞ.Ofcourse,mostofouranalysiswillholdforanytwoinputstotheproductionprocesswemightwishtoexamine.Thetermscapitalandlaborareusedonlyforconvenience.Similarly,itwouldbeasimplemattertogeneralizeourdiscussiontocasesinvolvingmorethantwoinputs;occasionally,wewilldoso.Forthemostpart,however,limitingthediscussiontotwoinputswillbequitehelpfulbecausewecanshowtheseinputsontwo-dimensionalgraphs.MarginalphysicalproductTostudyvariationinasingleinput,wedefinemarginalphysicalproductasfollows.1Hereweusealowercaseqtorepresentonefirm’soutput.WereservetheuppercaseQtorepresenttotaloutputinamarket.Generally,weassumethatafirmproducesonlyoneoutput.Issuesthatariseinmultiproductfirmsarediscussedinafewfootnotesandproblems.2Inempiricalworkrawmaterialinputsoftenaredisregardedandoutput,q,ismeasuredintermsof“valueadded.”295
DEFINITIONMarginalphysicalproduct.Themarginalphysicalproductofaninputistheadditionaloutputthatcanbeproducedbyemployingonemoreunitofthatinputwhileholdingallotherinputsconstant.Mathematically,marginalphysicalproductofcapital¼MPk¼∂q∂k¼fk,marginalphysicalproductoflabor¼MPl¼∂q∂l¼fl.(9.3)Noticethatthemathematicaldefinitionsofmarginalproductusepartialderivatives,therebyproperlyreflectingthefactthatallotherinputusageisheldconstantwhiletheinputofinterestisbeingvaried.Foranexample,considerafarmerhiringonemorelaborertoharvestthecropbutholdingallotherinputsconstant.Theextraoutputthislaborerproducesisthatfarmhand’smarginalphysicalproduct,measuredinphysicalquantities,suchasbushelsofwheat,cratesoforanges,orheadsoflettuce.Wemightobserve,forexample,that50workersonafarmareabletoproduce100bushelsofwheatperyear,whereas51workers,withthesamelandandequipment,canproduce102bushels.Themarginalphysicalproductofthe51stworkeristhen2bushelsperyear.DiminishingmarginalproductivityWemightexpectthatthemarginalphysicalproductofaninputdependsonhowmuchofthatinputisused.Labor,forexample,cannotbeaddedindefinitelytoagivenfield(whilekeepingtheamountofequipment,fertilizer,andsoforthfixed)withouteventuallyexhibitingsomedeteriorationinitsproductivity.Mathematically,theassumptionofdiminishingmar-ginalphysicalproductivityisanassumptionaboutthesecond-orderpartialderivativesoftheproductionfunction:∂MPk∂k¼∂2f∂k2¼fkk¼f11<0,∂MPl∂l¼∂2f∂l2¼fll¼f22<0:(9.4)Theassumptionofdiminishingmarginalproductivitywasoriginallyproposedbythenineteenth-centuryeconomistThomasMalthus,whoworriedthatrapidincreasesinpopulationwouldresultinlowerlaborproductivity.Hisgloomypredictionsforthefutureofhumanityledeconomicstobecalledthe“dismalscience.”Butthemathematicsoftheproductionfunctionsuggeststhatsuchgloommaybemisplaced.Changesinthemarginalproductivityoflaborovertimedependnotonlyonhowlaborinputisgrowing,butalsoonchangesinotherinputs,suchascapital.Thatis,wemustalsobeconcernedwith∂MPl=∂k¼flk.Inmostcases,flk>0,sodeclininglaborproductivityasbothlandkincreaseisnotaforegoneconclusion.Indeed,itappearsthatlaborproductivityhasrisensignificantlysinceMalthus’time,primarilybecauseincreasesincapitalinputs(alongwithtechnicalimprovements)haveoffsettheimpactofdiminishingmarginalproductivityalone.AveragephysicalproductivityIncommonusage,thetermlaborproductivityoftenmeansaverageproductivity.Whenitissaidthatacertainindustryhasexperiencedproductivityincreases,thisistakentomeanthatoutputperunitoflaborinputhasincreased.Althoughtheconceptofaverageproductivityisnotnearlyasimportantintheoreticaleconomicdiscussionsasmarginalproductivityis,itreceivesagreatdealofattentioninempiricaldiscussions.Becauseaverageproductivityis296Part3ProductionandSupply
easilymeasured(say,assomanybushelsofwheatperlabor-hourinput),itisoftenusedasameasureofefficiency.Wedefinetheaverageproductoflabor(APl)tobeAPl¼outputlaborinput¼ql¼fðk,lÞl.(9.5)NoticethatAPlalsodependsonthelevelofcapitalemployed.Thisobservationwillprovetobequiteimportantwhenweexaminethemeasurementoftechnicalchangeattheendofthischapter.EXAMPLE9.1ATwo-InputProductionFunctionSupposetheproductionfunctionforflyswattersduringaparticularperiodcanberepresentedbyq¼fðk,lÞ¼600k2l2k3l3.(9.6)Toconstructthemarginalandaverageproductivityfunctionsoflabor(l)forthisfunction,wemustassumeaparticularvaluefortheotherinput,capital(k).Supposek¼10.Thentheproductionfunctionisgivenbyq¼60,000l21,000l3.(9.7)Marginalproduct.Themarginalproductivityfunction(whenk¼10)isgivenbyMPl¼∂q∂l¼120,000l3,000l2,(9.8)whichdiminishesaslincreases,eventuallybecomingnegative.Thisimpliesthatqreachesamaximumvalue.SettingMPlequalto0,120,000l3,000l2¼0(9.9)yields40l¼l2(9.10)orl¼40(9.11)asthepointatwhichqreachesitsmaximumvalue.Laborinputbeyond40unitsperperiodactuallyreducestotaloutput.Forexample,whenl¼40,Equation9.7showsthatq¼32millionflyswatters,whereaswhenl¼50,productionofflyswattersamountstoonly25million.Averageproduct.Tofindtheaverageproductivityoflaborinflyswatterproduction,wedivideqbyl,stillholdingk¼10:APl¼ql¼60,000l1,000l2.(9.12)Again,thisisaninvertedparabolathatreachesitsmaximumvaluewhen∂APl∂l¼60,0002,000l¼0,(9.13)whichoccurswhenl¼30.Atthisvalueforlaborinput,Equation9.12showsthatAPl¼900,000,andEquation9.8showsthatMPlisalso900,000.WhenAPlisatamaximum,averageandmarginalproductivitiesoflaborareequal.3(continued)3Thisresultisquitegeneral.Because∂APl∂l¼l⋅MPlql2,atamaximumlMPl¼qorMPl¼APl.Chapter9ProductionFunctions297
EXAMPLE9.1CONTINUEDNoticetherelationshipbetweentotaloutputandaverageproductivitythatisillustratedbythisexample.Eventhoughtotalproductionofflyswattersisgreaterwith40workers(32million)thanwith30workers(27million),outputperworkerishigherinthesecondcase.With40workers,eachworkerproduces800,000flyswattersperperiod,whereaswith30workerseachworkerproduces900,000.Becausecapitalinput(flyswatterpresses)isheldconstantinthisdefinitionofproductivity,thediminishingmarginalproductivityoflaboreventuallyresultsinadeclininglevelofoutputperworker.QUERY:Howwouldanincreaseinkfrom10to11affecttheMPlandAPlfunctionshere?Explainyourresultsintuitively.ISOQUANTMAPSANDTHERATEOFTECHNICALSUBSTITUTIONToillustratepossiblesubstitutionofoneinputforanotherinaproductionfunction,weuseitsisoquantmap.Again,westudyaproductionfunctionoftheformq¼fðk,lÞ,withtheunderstandingthat“capital”and“labor”aresimplyconvenientexamplesofanytwoinputsthatmighthappentobeofinterest.Anisoquant(fromiso,meaning“equal”)recordsthosecombinationsofkandlthatareabletoproduceagivenquantityofoutput.Forexample,allthosecombinationsofkandlthatfallonthecurvelabeled“q¼10”inFigure9.1arecapableofproducing10unitsofoutputperperiod.Thisisoquantthenrecordsthefactthattherearemanyalternativewaysofproducing10unitsofoutput.OnewaymightberepresentedbypointA:WewoulduselAandkAtoproduce10unitsofoutput.Alternatively,wemightpreferFIGURE9.1AnIsoquantMapIsoquantsrecordthealternativecombinationsofinputsthatcanbeusedtoproduceagivenlevelofoutput.Theslopeofthesecurvesshowstherateatwhichlcanbesubstitutedforkwhilekeepingoutputconstant.Thenegativeofthisslopeiscalledthe(marginal)rateoftechnicalsubstitution(RTS).Inthefigure,theRTSispositiveanddiminishingforincreasinginputsoflabor.k per periodl per periodkAlAlBkBABq=30q=20q=10298Part3ProductionandSupply
touserelativelylesscapitalandmorelaborandthereforewouldchooseapointsuchasB.Hence,wemaydefineanisoquantasfollows.DEFINITIONIsoquant.Anisoquantshowsthosecombinationsofkandlthatcanproduceagivenlevelofoutput(say,q0).Mathematically,anisoquantrecordsthesetofkandlthatsatisfiesfðk,lÞ¼q0.(9.14)Aswasthecaseforindifferencecurves,thereareinfinitelymanyisoquantsinthek–lplane.Eachisoquantrepresentsadifferentlevelofoutput.Isoquantsrecordsuccessivelyhigherlevelsofoutputaswemoveinanortheasterlydirection.Presumably,usingmoreofeachoftheinputswillpermitoutputtoincrease.Twootherisoquants(forq¼20andq¼30)areshowninFigure9.1.Youwillnoticethesimilaritybetweenanisoquantmapandtheindividual’sindifferencecurvemapdiscussedinPart2.Theyareindeedsimilarconcepts,becausebothrepresent“contour”mapsofaparticularfunction.Forisoquants,however,thelabelingofthecurvesismeasurable—anoutputof10unitsperperiodhasaquantifiablemeaning.Economistsarethereforemoreinterestedinstudyingtheshapeofproductionfunctionsthaninexaminingtheexactshapeofutilityfunctions.Themarginalrateoftechnicalsubstitution(RTS)Theslopeofanisoquantshowshowoneinputcanbetradedforanotherwhileholdingoutputconstant.Examiningtheslopeprovidesinformationaboutthetechnicalpossibilityofsubstitutinglaborforcapital.Aformaldefinitionfollows.DEFINITIONMarginalrateoftechnicalsubstitution.Themarginalrateoftechnicalsubstitution(RTS)showstherateatwhichlaborcanbesubstitutedforcapitalwhileholdingoutputconstantalonganisoquant.Inmathematicalterms,RTSðlforkÞ¼dkdlq¼q0.(9.15)Inthisdefinition,thenotationisintendedasareminderthatoutputistobeheldconstantaslissubstitutedfork.Theparticularvalueofthistrade-offratewilldependnotonlyonthelevelofoutputbutalsoonthequantitiesofcapitalandlaborbeingused.Itsvaluedependsonthepointontheisoquantmapatwhichtheslopeistobemeasured.RTSandmarginalproductivitiesToexaminetheshapeofproductionfunctionisoquants,itisusefultoprovethefollowingresult:theRTS(oflfork)isequaltotheratioofthemarginalphysicalproductivityoflabor(MPl)tothemarginalphysicalproductivityofcapital(MPk).Webeginbysettingupthetotaldifferentialoftheproductionfunction:dq¼∂f∂l⋅dlþ∂f∂k⋅dk¼MPl⋅dlþMPk⋅dk,(9.16)whichrecordshowsmallchangesinlandkaffectoutput.Alonganisoquant,dq¼0(outputisconstant),soMPl⋅dl¼MPk⋅dk.(9.17)Thissaysthatalonganisoquant,thegaininoutputfromincreasinglslightlyisexactlybalancedbythelossinoutputfromsuitablydecreasingk.Rearrangingtermsabitgivesdkdlq¼q0¼RTSðlforkÞ¼MPlMPk.(9.18)HencetheRTSisgivenbytheratiooftheinputs’marginalproductivities.Chapter9ProductionFunctions299
Equation9.18showsthatthoseisoquantsthatweactuallyobservemustbenegativelysloped.BecausebothMPlandMPkwillbenonnegative(nofirmwouldchoosetouseacostlyinputthatreducedoutput),theRTSalsowillbepositive(orperhapszero).BecausetheslopeofanisoquantisthenegativeoftheRTS,anyfirmweobservewillnotbeoperatingonthepositivelyslopedportionofanisoquant.Althoughitismathematicallypossibletodeviseproductionfunctionswhoseisoquantshavepositiveslopesatsomepoints,itwouldnotmakeeconomicsenseforafirmtooptforsuchinputchoices.ReasonsforadiminishingRTSTheisoquantsinFigure9.1aredrawnnotonlywithanegativeslope(astheyshouldbe)butalsoasconvexcurves.Alonganyoneofthecurves,theRTSisdiminishing.Forhighratiosofktol,theRTSisalargepositivenumber,indicatingthatagreatdealofcapitalcanbegivenupifonemoreunitoflaborbecomesavailable.Ontheotherhand,whenalotoflaborisalreadybeingused,theRTSislow,signifyingthatonlyasmallamountofcapitalcanbetradedforanadditionalunitoflaborifoutputistobeheldconstant.Thisassumptionwouldseemtohavesomerelationshiptotheassumptionofdiminishingmarginalproductivity.AhastyuseofEquation9.18mightleadonetoconcludethatariseinlaccompaniedbyafallinkwouldresultinafallinMPl,ariseinMPk,and,therefore,afallintheRTS.Theproblemwiththisquick“proof”isthatthemarginalproductivityofaninputdependsonthelevelofbothinputs—changesinlaffectMPkandviceversa.ItisnotpossibletoderiveadiminishingRTSfromtheassumptionofdiminishingmarginalproductivityalone.Toseewhythisissomathematically,assumethatq¼fðk,lÞandthatfkandflarepositive(thatis,themarginalproductivitiesarepositive).Assumealsothatfkk<0andfll<0(thatthemarginalproductivitiesarediminishing).Toshowthatisoquantsareconvex,wewouldliketoshowthatdðRTSÞ=dl<0.SinceRTS¼fl=fk,wehavedRTSdl¼dðfl=fkÞdl.(9.19)Becauseflandfkarefunctionsofbothkandl,wemustbecarefulintakingthederivativeofthisexpression:dRTSdl¼fkðfllþflk⋅dk=dlÞflðfklþfkk⋅dk=dlÞðfkÞ2.(9.20)Usingthefactthatdk=dl¼fl=fkalonganisoquantandYoung’stheorem(fkl¼flk),wehavedRTSdl¼f2kfll2fkflfklþf2lfkkðfkÞ3.(9.21)Becausewehaveassumedfk>0,thedenominatorofthisfunctionispositive.Hencethewholefractionwillbenegativeifthenumeratorisnegative.Becausefllandfkkarebothassumedtobenegative,thenumeratordefinitelywillbenegativeiffklispositive.Ifwecanassumethis,wehaveshownthatdRTS=dl<0(thattheisoquantsareconvex)4.Importanceofcross-productivityeffectsIntuitively,itseemsreasonablethatthecross-partialderivativefkl¼flkshouldbepositive.Ifworkershadmorecapital,theywouldhavehighermarginalproductivities.But,althoughthisisprobablythemostprevalentcase,itdoesnotnecessarilyhavetobeso.Someproductionfunctionshavefkl<0,atleastforarangeofinputvalues.Whenweassumeadiminishing4AswepointedoutinChapter2,functionsforwhichthenumeratorinEquation9.21isnegativearecalled(strictly)quasi-concavefunctions.300Part3ProductionandSupply
RTS(aswewillthroughoutmostofourdiscussion),wearethereforemakingastrongerassumptionthansimplydiminishingmarginalproductivitiesforeachinput—specifically,weareassumingthatmarginalproductivitiesdiminish“rapidlyenough”tocompensateforanypossiblenegativecross-productivityeffects.Ofcourse,asweshallseelater,withthreeormoreinputs,thingsbecomeevenmorecomplicated.EXAMPLE9.2ADiminishingRTSInExample9.1,theproductionfunctionforflyswatterswasgivenbyq¼fðk,lÞ¼600k2l2k3l3.(9.22)GeneralmarginalproductivityfunctionsforthisproductionfunctionareMPl¼fl¼∂q∂l¼1,200k2l3k3l2,MPk¼fk¼∂q∂k¼1,200kl23k2l3.(9.23)Noticethateachofthesedependsonthevaluesofbothinputs.Simplefactoringshowsthatthesemarginalproductivitieswillbepositiveforvaluesofkandlforwhichkl<400.Becausefll¼1,200k26k3landfkk¼1,200l26kl3,(9.24)itisclearthatthisfunctionexhibitsdiminishingmarginalproductivitiesforsufficientlylargevaluesofkandl.Indeed,againbyfactoringeachexpression,itiseasytoshowthatfll,fkk<0ifkl>200.However,evenwithintherange200
makesensebecausetheindustrycanexpandorcontractbyaddingordroppinganarbitrarynumberofidenticalfirms(seeChapter12).Finally,studiesoftheentireU.S.economyhavefoundthatconstantreturnstoscaleisareasonablygoodapproximationtouseforan“aggregate”productionfunction.Forallofthesereasons,then,theconstantreturns-to-scalecaseseemsworthexamininginsomewhatmoredetail.Whenaproductionfunctionexhibitsconstantreturnstoscale,itmeetsthedefinitionof“homogeneity”thatweintroducedinChapter2.Thatis,theproductionishomogeneousofdegree1initsinputsbecausefðtk,tlÞ¼t1fðk,lÞ¼tq.(9.26)InChapter2weshowedthat,ifafunctionishomogeneousofdegreek,itsderivativesarehomogeneousofdegreek1.Inthiscontextthisimpliesthatthemarginalproductivityfunctionsderivedfromaconstantreturns-to-scaleproductionfunctionarehomogeneousofdegree0.Thatis,MPk¼∂fðk,lÞ∂k¼∂fðtk,tlÞ∂k,MPl¼∂fðk,lÞ∂l¼∂fðtk,tlÞ∂l(9.27)foranyt>0.Inparticular,wecanlett¼1=linEquations9.27andgetMPk¼∂fðk=l,1Þ∂k,MPl¼∂fðk=l,1Þ∂l.(9.28)Thatis,themarginalproductivityofanyinputdependsonlyontheratioofcapitaltolaborinput,notontheabsolutelevelsoftheseinputs.Thisfactisespeciallyimportant,forexample,inexplainingdifferencesinproductivityamongindustriesoracrosscountries.HomotheticproductionfunctionsOneconsequenceofEquations9.28isthattheRTSð¼MPl=MPkÞforanyconstantreturns-to-scaleproductionfunctionwilldependonlyontheratiooftheinputs,notontheirabsolutelevels.Thatis,suchafunctionwillbehomothetic(seeChapter2)—itsisoquantswillberadialexpansionsofoneanother.ThissituationisshowninFigure9.2.Alonganyraythroughtheorigin(wheretheratiok=ldoesnotchange),theslopesofsuccessivelyhigherisoquantsareidentical.Thispropertyoftheisoquantmapwillbeveryusefultousonseveraloccasions.Asimplenumericalexamplemayprovidesomeintuitionaboutthisresult.Supposearoofcanbeinstalledinonedaybythreeworkerswithonehammereachorbytwoworkerswithtwohammerseach(theseworkersareambidextrous).TheRTSofhammersforworkersisthereforeoneforone—oneextrahammercanbesubstitutedforoneworker.Ifthisproduc-tionprocessexhibitsconstantreturnstoscale,tworoofscanbeinstalledinonedayeitherbysixworkerswithsixhammersorbyfourworkerswitheighthammers.Inthelattercase,twohammersaresubstitutedfortwoworkers,soagaintheRTSisoneforone.Inconstantreturns-to-scalecases,expandingthelevelofproductiondoesnotaltertrade-offsamonginputs,soproductionfunctionsarehomothetic.Aproductionfunctioncanhaveahomotheticindifferencecurvemapevenifitdoesnotexhibitconstantreturnstoscale.AsweshowedinChapter2,thispropertyofhomotheticityisretainedbyanymonotonictransformationofahomogeneousfunction.Hence,increasingordecreasingreturnstoscalecanbeincorporatedintoaconstantreturns-to-scalefunctionChapter9ProductionFunctions303
throughanappropriatetransformation.Perhapsthemostcommonsuchtransformationisexponential.So,iffðk,lÞisaconstantreturns-to-scaleproductonfunction,wecanletFðk,lÞ¼½fðk,lÞγ,(9.29)whereγisanypositiveexponent.Ifγ>1thenFðtk,tlÞ¼½fðtk,tlÞγ¼½tfðk,lÞγ¼tγ½fðk,lÞγ¼tγFðk,lÞ>tFðk,lÞ(9.30)foranyt>1.Hence,thistransformedproductionfunctionexhibitsincreasingreturnstoscale.AnidenticalproofshowsthatthefunctionFexhibitsdecreasingreturnstoscaleforγ<1.Becausethisfunctionremainshomotheticthroughallsuchtransformations,wehaveshownthatthereareimportantcaseswheretheissueofreturnstoscalecanbeseparatedfromissuesinvolvingtheshapeofanisoquant.Inthenextsection,wewilllookathowshapesofisoquantscanbedescribed.Then-inputcaseThedefinitionofreturnstoscalecanbeeasilygeneralizedtoaproductionfunctionwithninputs.Ifthatproductionfunctionisgivenbyq¼fðx1,x2,…,xnÞ(9.31)andifallinputsaremultipliedbyt>1,wehavefðtx1,tx2,…,txnÞ¼tkfðx1,x2,…,xnÞ¼tkq(9.32)forsomeconstantk.Ifk¼1,theproductionfunctionexhibitsconstantreturnstoscale.Dimin-ishingandincreasingreturnstoscalecorrespondtothecasesk<1andk>1,respectively.Thecrucialpartofthismathematicaldefinitionistherequirementthatallinputsbeincreasedbythesameproportion,t.Inmanyreal-worldproductionprocesses,thisprovisionmaymakelittleeconomicsense.Forexample,afirmmayhaveonlyone“boss,”andthatFIGURE9.2IsoquantMapforaConstantReturns-to-ScaleProductionFunctionForaconstantreturns-to-scaleproductionfunction,theRTSdependsonlyontheratioofktol,notonthescaleofproduction.Consequently,eachisoquantwillbearadialblowupoftheunitisoquant.Alonganyraythroughtheorigin(arayofconstantk=l),theRTSwillbethesameonallisoquants.l per periodk per periodq=3q=2q=1304Part3ProductionandSupply
numberwouldnotnecessarilybedoubledevenifallotherinputswere.Ortheoutputofafarmmaydependonthefertilityofthesoil.Itmaynotbeliterallypossibletodoubletheacresplantedwhilemaintainingfertility,becausethenewlandmaynotbeasgoodasthatalreadyundercultivation.Hence,someinputsmayhavetobefixed(oratleastimperfectlyvariable)formostpracticalpurposes.Insuchcases,somedegreeofdiminishingproductivity(aresultofincreasingemploymentofvariableinputs)seemslikely,althoughthiscannotproperlybecalled“diminishingreturnstoscale”becauseofthepresenceofinputsthatareheldfixed.THEELASTICITYOFSUBSTITUTIONAnotherimportantcharacteristicoftheproductionfunctionishow“easy”itistosubstituteoneinputforanother.Thisisaquestionabouttheshapeofasingleisoquantratherthanaboutthewholeisoquantmap.Alongoneisoquant,therateoftechnicalsubstitutionwilldecreaseasthecapital-laborratiodecreases(thatis,ask=ldecreases);nowwewishtodefinesomeparameterthatmeasuresthisdegreeofresponsiveness.IftheRTSdoesnotchangeatallforchangesink=l,wemightsaythatsubstitutioniseasybecausetheratioofthemarginalproductivitiesofthetwoinputsdoesnotchangeastheinputmixchanges.Alternatively,iftheRTSchangesrapidlyforsmallchangesink=l,wewouldsaythatsubstitutionisdifficultbecauseminorvariationsintheinputmixwillhaveasubstantialeffectontheinputs’relativeproductivities.Ascale-freemeasureofthisresponsivenessisprovidedbytheelasticityofsubstitution,aconceptweencounteredinPart2.Nowwecanprovideaformaldefinition.DEFINITIONElasticityofsubstitution.Fortheproductionfunctionq¼fðk,lÞ,theelasticityofsubsti-tutionðσÞmeasurestheproportionatechangeink=lrelativetotheproportionatechangeintheRTSalonganisoquant.Thatis,σ¼percent∆ðk=lÞpercent∆RTS¼dðk=lÞdRTS⋅RTSk=l¼∂lnk=l∂lnRTS¼∂lnk=l∂lnfl=fk.(9.33)Becausealonganisoquant,k=landRTSmoveinthesamedirection,thevalueofσisalwayspositive.Graphically,thisconceptisillustratedinFigure9.3asamovementfrompointAtopointBonanisoquant.Inthismovement,boththeRTSandtheratiok=lwillchange;weareinterestedintherelativemagnitudeofthesechanges.Ifσishigh,thentheRTSwillnotchangemuchrelativetok=landtheisoquantwillberelativelyflat.Ontheotherhand,alowvalueofσimpliesarathersharplycurvedisoquant;theRTSwillchangebyasubstantialamountask=lchanges.Ingeneral,itispossiblethattheelasticityofsubstitutionwillvaryasonemovesalonganisoquantandasthescaleofproductionchanges.Often,however,itisconvenienttoassumethatσisconstantalonganisoquant.Iftheproductionfunctionisalsohomothetic,then—becausealltheisoquantsaremerelyradialblowups—σwillbethesamealongallisoquants.Wewillencountersuchfunctionslaterinthischapterandinmanyofitsproblems.6Then-inputcaseGeneralizingtheelasticityofsubstitutiontothemany-inputcaseraisesseveralcomplications.OneapproachistoadoptadefinitionanalogoustoEquation9.33;thatis,todefinetheelasticityofsubstitutionbetweentwoinputstobetheproportionatechangeintheratioof6Theelasticityofsubstitutioncanbephraseddirectlyintermsoftheproductionfunctionanditsderivativesintheconstantreturns-to-scalecaseasσ¼fk⋅flf⋅fk,l.Butthisformisquitecumbersome.HenceusuallythelogarithmicdefinitioninEquation9.33iseasiesttoapply.Foracompactsummary,seeP.BerckandK.Sydsaeter,Economist’sMathematicalManual(Berlin:Springer-Verlag,1999),chap.5.Chapter9ProductionFunctions305
thetwoinputstotheproportionatechangeintheRTSbetweenthemwhileholdingoutputconstant.7Tomakethisdefinitioncomplete,itisnecessarytorequirethatallinputsotherthanthetwobeingexaminedbeheldconstant.However,thislatterrequirement(whichisnotrelevantwhenthereareonlytwoinputs)restrictsthevalueofthispotentialdefinition.Inreal-worldproductionprocesses,itislikelythatanychangeintheratiooftwoinputswillalsobeaccompaniedbychangesinthelevelsofotherinputs.Someoftheseotherinputsmaybecomplementarywiththeonesbeingchanged,whereasothersmaybesubstitutes,andtoholdthemconstantcreatesaratherartificialrestriction.Forthisreason,analternativedefinitionoftheelasticityofsubstitutionthatpermitssuchcomplementarityandsubstitutabilityinthefirm’scostfunctionisgenerallyusedinthen-goodcase.Becausethisconceptisusuallymeasuredusingcostfunctions,wewilldescribeitinthenextchapter.FOURSIMPLEPRODUCTIONFUNCTIONSInthissectionweillustratefoursimpleproductionfunctions,eachcharacterizedbyadifferentelasticityofsubstitution.Theseareshownonlyforthecaseoftwoinputs,butgeneralizationtomanyinputsiseasilyaccomplished(seetheExtensionsforthischapter).FIGURE9.3GraphicDescriptionoftheElasticityofSubstitutionInmovingfrompointAtopointBontheq¼q0isoquant,boththecapital-laborratio(k=l)andtheRTSwillchange.Theelasticityofsubstitution(σ)isdefinedtobetheratiooftheseproportionalchanges;itisameasureofhowcurvedtheisoquantis.k perperiodl per periodq=q0AB(k/l)A(k/l)BRTSARTSB7Thatis,theelasticityofsubstitutionbetweeninputiandinputjmightbedefinedasσij¼∂lnðxi=xjÞ∂lnðfj=fiÞformovementsalongfðx1,x2,…,xnÞ¼c.Noticethattheuseofpartialderivativesinthisdefinitioneffectivelyrequiresthatallinputsotherthaniandjbeheldconstantwhenconsideringmovementsalongthecisoquant.306Part3ProductionandSupply
Case1:Linear(σ¼∞)Supposethattheproductionfunctionisgivenbyq¼fðk,lÞ¼akþbl.(9.34)Itiseasytoshowthatthisproductionfunctionexhibitsconstantreturnstoscale:Foranyt>1,fðtk,tlÞ¼atkþbtl¼tðakþblÞ¼tfðk,lÞ.(9.35)Allisoquantsforthisproductionfunctionareparallelstraightlineswithslopeb=a.Suchanisoquantmapispicturedinpanel(a)ofFigure9.4.BecausetheRTSisconstantalonganystraight-lineisoquant,thedenominatorinthedefinitionofσ(Equation9.33)isequalto0andhenceσisinfinite.Althoughthislinearproductionfunctionisausefulexample,itisFIGURE9.4IsoquantMapsforSimpleProductionFunctionswithVariousValuesforσThreepossiblevaluesfortheelasticityofsubstitutionareillustratedinthesefigures.In(a),capitalandlaborareperfectsubstitutes.Inthiscase,theRTSwillnotchangeasthecapital-laborratiochanges.In(b),thefixed-proportionscase,nosubstitutionispossible.Thecapital-laborratioisfixedatb=a.Acaseoflimitedsubstitutabilityisillustratedin(c).k perperiodk perperiodk perperiodl per periodl per periodl per periodq3q2q1q3q2q1q3q2q1σ=∞σ=0σ=1(a)(b)(c)Slope = __–ba__q3a__q3bChapter9ProductionFunctions307
rarelyencounteredinpracticebecausefewproductionprocessesarecharacterizedbysucheaseofsubstitution.Indeed,inthiscase,capitalandlaborcanbethoughtofasperfectsubstitutesforeachother.Anindustrycharacterizedbysuchaproductionfunctioncoulduseonlycapitaloronlylabor,dependingontheseinputs’prices.Itishardtoenvisionsuchaproductionprocess:Everymachineneedssomeonetopressitsbuttons,andeverylaborerrequiressomecapitalequipment,howevermodest.Case2:Fixedproportions(σ¼0)Theproductionfunctioncharacterizedbyσ¼0istheimportantcaseofafixed-proportionsproductionfunction.Capitalandlabormustalwaysbeusedinafixedratio.TheisoquantsforthisproductionfunctionareL-shapedandarepicturedinpanel(b)ofFigure9.4.Afirmcharacterizedbythisproductionfunctionwillalwaysoperatealongtheraywheretheratiok=lisconstant.Tooperateatsomepointotherthanatthevertexoftheisoquantswouldbeinefficient,becausethesameoutputcouldbeproducedwithfewerinputsbymovingalongtheisoquanttowardthevertex.Becausek=lisaconstant,itiseasytoseefromthedefinitionoftheelasticityofsubstitutionthatσmustequal0.Themathematicalformofthefixed-proportionsproductionfunctionisgivenbyq¼minðak,blÞ,a,b>0,(9.36)wheretheoperator“min”meansthatqisgivenbythesmallerofthetwovaluesinparentheses.Forexample,supposethatak
theCobb-Douglascasehavethe“normal”convexshapeandareshowninpanel(c)ofFigure9.4.ThemathematicalformoftheCobb-Douglasproductionfunctionisgivenbyq¼fðk,lÞ¼Akalb,(9.37)whereA,a,andbareallpositiveconstants.TheCobb-Douglasfunctioncanexhibitanydegreeofreturnstoscale,dependingonthevaluesofaandb.Supposeallinputswereincreasedbyafactoroft.Thenfðtk,tlÞ¼AðtkÞaðtlÞb¼Ataþbkalb¼taþbfðk,lÞ.(9.38)Hence,ifaþb¼1,theCobb-Douglasfunctionexhibitsconstantreturnstoscalebecauseoutputalsoincreasesbyafactoroft.Ifaþb>1thenthefunctionexhibitsincreasingreturnstoscale,whereasaþb<1correspondstothedecreasingreturns-to-scalecase.Itisasimplemattertoshowthattheelasticityofsubstitutionis1fortheCobb-Douglasfunction.11Thisfacthasledresearcherstousetheconstantreturns-to-scaleversionofthefunctionforageneraldescriptionofaggregateproductionrelationshipsinmanycountries.TheCobb-Douglasfunctionhasalsoprovedtobequiteusefulinmanyapplicationsbecauseitislinearinlogarithms:lnq¼lnAþalnkþblnl.(9.39)Theconstantaisthentheelasticityofoutputwithrespecttocapitalinput,andbistheelasticityofoutputwithrespecttolaborinput.12Theseconstantscansometimesbeestimatedfromactualdata,andsuchestimatesmaybeusedtomeasurereturnstoscale(byexaminingthesumaþb)andforotherpurposes.Case4:CESproductionfunctionAfunctionalformthatincorporatesallofthethreepreviouscasesandallowsσtotakeonothervaluesaswellistheconstantelasticityofsubstitution(CES)productionfunctionfirstintroducedbyArrowetal.in1961.13Thisfunctionisgivenbyq¼fðk,lÞ¼½kρþlργ=ρ(9.40)forρ1,ρ6¼0,andγ>0.ThisfunctioncloselyresemblestheCESutilityfunctiondiscussedinChapter3,thoughnowwehaveaddedtheexponentγ=ρtopermitexplicitintroductionofreturns-to-scalefactors.Forγ>1thefunctionexhibitsincreasingreturnstoscale,whereasforγ<1itexhibitsdiminishingreturns.11FortheCobb-Douglasfunction,RTS¼flfk¼bAkalb1aAka1lb¼baklorlnRTS¼lnðb=aÞþlnðk=lÞ.Henceσ¼∂lnk=l∂lnRTS¼1.12SeeProblem9.5.13K.J.Arrow,H.B.Chenery,B.S.Minhas,andR.M.Solow,“Capital-LaborSubstitutionandEconomicEfficiency,”ReviewofEconomicsandStatistics(August1961):225–50.Chapter9ProductionFunctions309
Directapplicationofthedefinitionofσtothisfunction14givestheimportantresultthatσ¼11ρ.(9.41)Hencethelinear,fixed-proportions,andCobb-Douglascasescorrespondtoρ¼1,ρ¼∞,andρ¼0,respectively.ProofofthisresultforthefixedproportionsandCobb-Douglascasesrequiresalimitargument.OftentheCESfunctionisusedwithadistributionalweight,βð0β1Þ,toindicatetherelativesignificanceoftheinputs:q¼fðk,lÞ¼½βkρþð1βÞlργ=ρ:(9.42)Withconstantreturnstoscaleandρ¼0,thisfunctionconvergestotheCobb-Douglasformq¼fðk,lÞ¼kβl1β.(9.43)EXAMPLE9.3AGeneralizedLeontiefProductionFunctionSupposethattheproductionfunctionforagoodisgivenbyq¼fðk,lÞ¼kþlþ2ffiffiffiffiffiffiffiffik⋅lp.(9.44)ThisfunctionisaspecialcaseofaclassoffunctionsnamedfortheRussian-AmericaneconomistWassilyLeontief.15Thefunctionclearlyexhibitsconstantreturnstoscalebecausefðtk,tlÞ¼tkþtlþ2tffiffiffiffiffiklp¼tfðk,lÞ.(9.45)MarginalproductivitiesfortheLeontieffunctionarefk¼1þðk=lÞ0:5,fl¼1þðk=lÞ0:5.(9.46)Hence,marginalproductivitiesarepositiveanddiminishing.Aswouldbeexpected(becausethisfunctionexhibitsconstantreturnstoscale),theRTSheredependsonlyontheratioofthetwoinputsRTS¼flfk¼1þðk=lÞ0:51þðk=lÞ0:5.(9.47)ThisRTSdiminishesask=lfalls,sotheisoquantshavetheusualconvexshape.14FortheCESfunctionwehaveRTS¼flfk¼ðγ=ρÞ⋅qðγρÞ=γ⋅ρlρ1ðγ=ρÞ⋅qðγρÞ=γ⋅ρkρ1¼lkρ1¼kl1ρ.Applyingthedefinitionoftheelasticityofsubstitutionthenyieldsσ¼∂lnðk=lÞ∂lnRTS¼11ρ.Noticeinthiscomputationthatthefactorρcancelsoutofthemarginalproductivityfunctions,therebyensuringthatthesemarginalproductivitiesarepositiveevenwhenρisnegative(asitisinmanycases).ThisexplainswhyρappearsintwodifferentplacesinthedefinitionoftheCESfunction.15Lenotiefwasapioneerinthedevelopmentofinput-outputanalysis.Ininput-outputanalysis,productionisassumedtotakeplacewithafixed-proportionstechnology.TheLeontiefproductionfunctiongeneralizesthefixed-proportionscase.FormoredetailsseethediscussionofLeontiefproductionfunctionsintheExtensionstothischapter.310Part3ProductionandSupply
Therearetwowaysyoumightcalculatetheelasticityofsubstitutionforthisproductionfunction.First,youmightnoticethatinthisspecialcasethefunctioncanbefactoredasq¼kþlþ2ffiffiffiffiffiklp¼ðffiffiffikpþffiffilpÞ2¼ðk0:5þl0:5Þ2,(9.48)whichmakesclearthatthisfunctionhasaCESformwithρ¼0:5andγ¼1.Hencetheelasticityofsubstitutionhereisσ¼1=ð1ρÞ¼2.Ofcourse,inmostcasesitisnotpossibletodosuchasimplefactorization.Amoreex-haustiveapproachistoapplythedefinitionoftheelasticityofsubstitutiongiveninfootnote6ofthischapter:σ¼fkflf⋅fkl¼½1þðk=lÞ0:5½1þðk=lÞ0:5q⋅ð0:5=ffiffiffiffiffiklpÞ¼2þðk=lÞ0:5þðk=lÞ0:51þ0:5ðk=lÞ0:5þ0:5ðk=lÞ0:5¼2:(9.49)Noticethatinthiscalculationtheinputratioðk=lÞdropsout,leavingaverysimpleresult.Inotherapplications,onemightdoubtthatsuchafortuitousresultwouldoccurandhencedoubtthattheelasticityofsubstitutionisconstantalonganisoquant(seeProblem9.7).Butheretheresultthatσ¼2isintuitivelyreasonable,becausethatvaluerepresentsacompromisebetweentheelasticityofsubstitutionforthisproductionfunction’slinearpartðq¼kþl,σ¼∞ÞanditsCobb-Douglaspartðq¼2k0:5l0:5,σ¼1Þ.QUERY:Whatcanyoulearnaboutthisproductionfunctionbygraphingtheq¼4isoquant?Whydoesthisfunctiongeneralizethefixedproportionscase?TECHNICALPROGRESSMethodsofproductionimproveovertime,anditisimportanttobeabletocapturetheseimprovementswiththeproductionfunctionconcept.AsimplifiedviewofsuchprogressisprovidedbyFigure9.5.Initially,isoquantq0recordsthosecombinationsofcapitalandlaborthatcanbeusedtoproduceanoutputlevelofq0.Followingthedevelopmentofsuperiorproductiontechniques,thisisoquantshiftstoq00.Nowthesamelevelofoutputcanbeproducedwithfewerinputs.Onewaytomeasurethisimprovementisbynotingthatwithalevelofcapitalinputof,say,k1,itpreviouslytookl2unitsoflabortoproduceq0,whereasnowittakesonlyl1.Outputperworkerhasrisenfromq0=l2toq0=l1.Butonemustbecarefulinthistypeofcalculation.Anincreaseincapitalinputtok2wouldalsohavepermittedareductioninlaborinputtol1alongtheoriginalq0isoquant.Inthiscase,outputperworkerwouldalsorise,althoughtherewouldhavebeennotruetechnicalprogress.Useoftheproductionfunctionconceptcanhelptodifferentiatebetweenthesetwoconceptsandthereforealloweconomiststoobtainanaccurateestimateoftherateoftechnicalchange.MeasuringtechnicalprogressThefirstobservationtobemadeabouttechnicalprogressisthathistoricallytherateofgrowthofoutputovertimehasexceededthegrowthratethatcanbeattributedtothegrowthinconventionallydefinedinputs.Supposethatweletq¼AðtÞfðk,lÞ(9.50)betheproductionfunctionforsomegood(orperhapsforsociety’soutputasawhole).ThetermAðtÞinthefunctionrepresentsalltheinfluencesthatgointodeterminingqotherthank(machine-hours)andl(labor-hours).ChangesinAovertimerepresenttechnicalprogress.Chapter9ProductionFunctions311
Forthisreason,Aisshownasafunctionoftime.PresumablydA=dt>0;particularlevelsofinputoflaborandcapitalbecomemoreproductiveovertime.DifferentiatingEquation9.50withrespecttotimegivesdqdt¼dAdt⋅fk,lðÞþA⋅dfðk,lÞdt¼dAdt⋅qAþqfðk,lÞ∂f∂k⋅dkdtþ∂f∂l⋅dldt.(9.51)Dividingbyqgivesdq=dtq¼dA=dtAþ∂f=∂kfðk,lÞ⋅dkdtþ∂f=∂lfðk,lÞ⋅dldt(9.52)ordq=dtq¼dA=dtAþ∂f∂k⋅kfðk,lÞ⋅dk=dtkþ∂f∂l⋅lfðk,lÞ⋅dl=dtl.(9.53)Now,foranyvariablex,(dx=dt)/xistheproportionalrateofgrowthofxperunitoftime.WeshalldenotethisbyGx.16Hence,Equation9.53canbewrittenintermsofgrowthratesasFIGURE9.5TechnicalProgressTechnicalprogressshiftstheq0isoquanttowardtheorigin.Thenewq0isoquant,q00,showsthatagivenlevelofoutputcannowbeproducedwithlessinput.Forexample,withk1unitsofcapitalitnowonlytakesl1unitsoflabortoproduceq0,whereasbeforethetechnicaladvanceittookl2unitsoflabor.k perperiodl per periodk1k2l2l1q0q′016Twousefulfeaturesofthisdefinitionare:(1)Gx⋅y¼GxþGy—thatis,thegrowthrateofaproductoftwovariablesisthesumofeachone’sgrowthrate;and(2)Gx=y¼GxGy.312Part3ProductionandSupply
Gq¼GAþ∂f∂k⋅kfðk,lÞ⋅Gkþ∂f∂l⋅lfðk,lÞ⋅Gl,(9.54)but∂f∂k⋅kfðk,lÞ¼∂q∂k⋅kq¼elasticityofoutputwithrespecttocapitalinput¼eq,kand∂f∂l⋅lfðk,lÞ¼∂q∂l⋅lq¼elasticityofoutputwithrespecttolaborinput¼eq;l.GrowthaccountingTherefore,ourgrowthequationfinallybecomesGq¼GAþeq,kGkþeq,lGl.(9.55)Thisshowsthattherateofgrowthinoutputcanbebrokendownintothesumoftwocomponents:growthattributedtochangesininputs(kandl)andother“residual”growth(thatis,changesinA)thatrepresentstechnicalprogress.Equation9.55providesawayofestimatingtherelativeimportanceoftechnicalprogress(GA)indeterminingthegrowthofoutput.Forexample,inapioneeringstudyoftheentireU.S.economybetweentheyears1909and1949,R.M.Solowrecordedthefollowingvaluesforthetermsintheequation:17Gq¼2:75percentperyear,Gl¼1:00percentperyear,Gk¼1:75percentperyear,eq,l¼0:65,eq,k¼0:35.Consequently,GA¼Gqeq,lGleq,kGk¼2:750:65ð1:00Þ0:35ð1:75Þ¼2:750:650:60¼1:50.(9.56)TheconclusionSolowreached,then,wasthattechnologyadvancedatarateof1.5percentperyearfrom1909to1949.Morethanhalfofthegrowthinrealoutputcouldbeattributedtotechnicalchangeratherthantogrowthinthephysicalquantitiesofthefactorsofproduc-tion.MorerecentevidencehastendedtoconfirmSolow’sconclusionsabouttherelativeimportanceoftechnicalchange.Considerableuncertaintyremains,however,abouttheprecisecausesofsuchchange.17R.M.Solow,“TechnicalProgressandtheAggregateProductionFunction,”ReviewofEconomicsandStatistics39(August1957):312–f20.Chapter9ProductionFunctions313
EXAMPLE9.4TechnicalProgressintheCobb-DouglasProductionFunctionTheCobb-Douglasproductionfunctionprovidesanespeciallyeasyavenueforillustratingtechnicalprogress.Assumingconstantreturnstoscale,suchaproductionfunctionwithtechnicalprogressmightberepresentedbyq¼AðtÞfðk,lÞ¼AðtÞkαl1α.(9.57)Ifwealsoassumethattechnicalprogressoccursataconstantexponential(θ),thenwecanwriteAðtÞ¼Aeθtandtheproductionfunctionbecomesq¼Aeθtkαl1α.(9.58)Aparticularlyeasywaytostudythepropertiesofthistypeoffunctionovertimeistouse“logarithmicdifferentiation”:∂lnq∂t¼∂lnq∂q⋅∂q∂t¼∂q=∂tq¼Gq¼∂½lnAþθtþαlnkþð1αÞlnl∂t¼θþα⋅∂lnk∂tþð1αÞ⋅∂lnl∂t¼θþαGkþð1−αÞGl.(9.59)SothisderivationjustrepeatsEquation9.55fortheCobb-Douglascase.Herethetechnicalchangefactorisexplicitlymodeled,andtheoutputelasticitiesaregivenbythevaluesoftheexponentsintheCobb-Douglas.Theimportanceoftechnicalprogresscanbeillustratednumericallywiththisfunction.SupposeA¼10,θ¼0:03,α¼0:5andthatafirmusesaninputmixofk¼l¼4.Then,att¼0,outputis40ð¼10⋅40:5⋅40:5Þ.After20yearsðt¼20Þ,theproductionfunctionbecomesq¼10e0:03⋅20k0:5l0:5¼10⋅ð1:82Þk0:5l0:5¼18:2k0:5l0:5.(9.60)Inyear20theoriginalinputmixnowyieldsq¼72:8.Ofcourse,onecouldalsohaveproducedq¼72:8inyear0,butitwouldhavetakenalotmoreinputs.Forexample,withk¼13:25andl¼4,outputisindeed72.8butmuchmorecapitalisused.Outputperunitoflaborinputwouldrisefrom10(q=l¼40=4)to18:2ð¼72:8=4)ineithercircumstance,butonlythefirstcasewouldhavebeentruetechnicalprogress.Input-augmentingtechnicalprogress.Itistemptingtoattributetheincreaseintheaverageproductivityoflaborinthisexampleto,say,improvedworkerskills,butthatwouldbemisleadingintheCobb-Douglascase.Onemightjustaswellhavesaidthatoutputperunitofcapitalrosefrom10to18.2overthe20yearsandattributethisrisetoimprovedmachinery.Aplausibleapproachtomodelingimprovementsinlaborandcapitalseparatelyistoassumethattheproductionfunctionisq¼AðeφtkÞαðeεtlÞ1α,(9.61)whereφrepresentstheannualrateofimprovementincapitalinputandεrepresentstheannualrateofimprovementinlaborinput.But,becauseoftheexponentialnatureoftheCobb-Douglasfunction,thiswouldbeindistinguishablefromouroriginalexample:q¼Ae½αφþð1αÞεtkαl1α¼Aeθtkαl1α,(9.62)whereθ¼αφþð1αÞε.Hence,tostudytechnicalprogressinindividualinputs,itisnecessaryeithertoadoptamorecomplexwayofmeasuringinputsthatallowsforimprovingqualityor(whatamountstothesamething)touseamulti-inputproductionfunction.314Part3ProductionandSupply
QUERY:ActualstudiesofproductionusingtheCobb-Douglastendtofindα0.3.UsethisfindingtogetherwithEquation9.62todiscusstherelativeimportanceofimprovingcapitalandlaborqualitytotheoverallrateoftechnicalprogress.PROBLEMS9.1PowerGoatLawnCompanyusestwosizesofmowerstocutlawns.Thesmallermowershavea24-inchbladeandareusedonlawnswithmanytreesandobstacles.Thelargermowersareexactlytwiceasbigasthesmallermowersandareusedonopenlawnswheremaneuverabilityisnotsodifficult.ThetwoproductionfunctionsavailabletoPowerGoatare:a.Graphtheq¼40,000squarefeetisoquantforthefirstproductionfunction.Howmuchkandlwouldbeusedifthesefactorswerecombinedwithoutwaste?OutputperHour(squarefeet)CapitalInput(#of2400mowers)LaborInputLargemowers800021Smallmowers500011SUMMARYInthischapterweillustratedthewaysinwhicheconomistsconceptualizetheproductionprocessofturninginputsintooutputs.Thefundamentaltoolistheproductionfunction,which—initssimplestform—assumesthatoutputperperiod(q)isasimplefunctionofcapitalandlaborinputsduringthatperiod,q¼fðk,lÞ.Usingthisstartingpoint,wedevelopedseveralbasicresultsforthetheoryofproduction.•Ifallbutoneoftheinputsareheldconstant,arelation-shipbetweenthesingle-variableinputandoutputcanbederived.Fromthisrelationship,onecanderivethemar-ginalphysicalproductivity(MP)oftheinputasthechangeinoutputresultingfromaone-unitincreaseintheuseoftheinput.Themarginalphysicalproductivityofaninputisassumedtodeclineasuseoftheinputincreases.•Theentireproductionfunctioncanbeillustratedbyitsisoquantmap.The(negativeofthe)slopeofanisoquantistermedthemarginalrateoftechnicalsubstitution(RTS),becauseitshowshowoneinputcanbesubsti-tutedforanotherwhileholdingoutputconstant.TheRTSistheratioofthemarginalphysicalproductivitiesofthetwoinputs.•Isoquantsareusuallyassumedtobeconvex—theyobeytheassumptionofadiminishingRTS.Thisassumptioncannotbederivedexclusivelyfromtheassumptionofdiminishingmarginalphysicalproductivities.Onemustalsobeconcernedwiththeeffectofchangesinoneinputonthemarginalproductivityofotherinputs.•Thereturnstoscaleexhibitedbyaproductionfunctionrecordhowoutputrespondstoproportionateincreasesinallinputs.Ifoutputincreasesproportionatelywithinputuse,thereareconstantreturnstoscale.Iftherearegreaterthanproportionateincreasesinoutput,thereareincreasingreturnstoscale,whereasiftherearelessthanproportionateincreasesinoutput,therearede-creasingreturnstoscale.•TheelasticityofsubstitutionðσÞprovidesameasureofhoweasyitistosubstituteoneinputforanotherinpro-duction.Ahighσimpliesnearlylinearisoquants,whereasalowσimpliesthatisoquantsarenearlyL-shaped.•Technicalprogressshiftstheentireproductionfunctionanditsrelatedisoquantmap.Technicalimprovementsmayarisefromtheuseofimproved,more-productiveinputsorfrombettermethodsofeconomicorganization.Chapter9ProductionFunctions315
b.Answerpart(a)forthesecondfunction.c.Howmuchkandlwouldbeusedwithoutwasteifhalfofthe40,000-square-footlawnwerecutbythemethodofthefirstproductionfunctionandhalfbythemethodofthesecond?Howmuchkandlwouldbeusedifthreefourthsofthelawnwerecutbythefirstmethodandonefourthbythesecond?Whatdoesitmeantospeakoffractionsofkandl?d.Onthebasisofyourobservationsinpart(c),drawaq¼40,000isoquantforthecombinedproductionfunctions.9.2Supposetheproductionfunctionforwidgetsisgivenbyq¼kl0:8k20:2l2,whereqrepresentstheannualquantityofwidgetsproduced,krepresentsannualcapitalinput,andlrepresentsannuallaborinput.a.Supposek¼10;graphthetotalandaverageproductivityoflaborcurves.Atwhatleveloflaborinputdoesthisaverageproductivityreachamaximum?Howmanywidgetsareproducedatthatpoint?b.Againassumingthatk¼10,graphtheMPlcurve.AtwhatleveloflaborinputdoesMPl¼0?c.Supposecapitalinputswereincreasedtok¼20.Howwouldyouranswerstoparts(a)and(b)change?d.Doesthewidgetproductionfunctionexhibitconstant,increasing,ordecreasingreturnstoscale?9.3SamMaloneisconsideringrenovatingthebarstoolsatCheers.Theproductionfunctionfornewbarstoolsisgivenbyq¼0:1k0:2l0:8,whereqisthenumberofbarstoolsproducedduringtherenovationweek,krepresentsthenumberofhoursofbarstoollathesusedduringtheweek,andlrepresentsthenumberofworkerhoursemployedduringtheperiod.Samwouldliketoprovide10newbarstools,andhehasallocatedabudgetof$10,000fortheproject.a.Samreasonsthatbecausebarstoollathesandskilledbarstoolworkersbothcostthesameamount($50perhour),hemightaswellhirethesetwoinputsinequalamounts.IfSamproceedsinthisway,howmuchofeachinputwillhehireandhowmuchwilltherenovationprojectcost?b.Norm(whoknowssomethingaboutbarstools)arguesthatonceagainSamhasforgottenhismicroeconomics.HeassertsthatSamshouldchoosequantitiesofinputssothattheirmarginal(notaverage)productivitiesareequal.IfSamoptsforthisplaninstead,howmuchofeachinputwillhehireandhowmuchwilltherenovationprojectcost?c.UponhearingthatNorm’splanwillsavemoney,CliffarguesthatSamshouldputthesavingsintomorebarstoolsinordertoprovideseatingtomoreofhisUSPScolleagues.HowmanymorebarstoolscanSamgetforhisbudgetifhefollowsCliff’splan?d.CarlaworriesthatCliff’ssuggestionwilljustmeanmoreworkforherindeliveringfoodtobarpatrons.HowmightsheconvinceSamtosticktohisoriginal10–barstoolplan?316Part3ProductionandSupply
9.4SupposethattheproductionofcrayonsðqÞisconductedattwolocationsandusesonlylaborasaninput.Theproductionfunctioninlocation1isgivenbyq1¼10l0.51andinlocation2byq2¼50l0.52:a.Ifasinglefirmproducescrayonsinbothlocations,thenitwillobviouslywanttogetaslargeanoutputaspossiblegiventhelaborinputituses.Howshoulditallocatelaborbetweenthelocationsinordertodoso?Explainpreciselytherelationshipbetweenl1andl2:b.Assumingthatthefirmoperatesintheefficientmannerdescribedinpart(a),howdoestotaloutputðqÞdependonthetotalamountoflaborhiredðlÞ?9.5Aswehaveseeninmanyplaces,thegeneralCobb-Douglasproductionfunctionfortwoinputsisgivenbyq¼fðk,lÞ¼Akαlβ,where0<α<1and0<β<1:Forthisproductionfunction:a.Showthatfk>0,fl>0,fkk<0,fll<0,andfkl¼flk>0.b.Showthateq,k¼αandee,l¼β:c.Infootnote5,wedefinedthescaleelasticityaseq,t¼∂fðtk,tlÞ∂t⋅tfðtk,tlÞ,wheretheexpressionistobeevaluatedatt¼1:Showthat,forthisCobb-Douglasfunction,eq,t¼αþβ:Hence,inthiscasethescaleelasticityandthereturnstoscaleoftheproductionfunctionagree(formoreonthisconceptseeProblem9.9).d.Showthatthisfunctionisquasi-concave.e.Showthatthefunctionisconcaveforαþβ1butnotconcaveforαþβ>1:9.6Supposewearegiventheconstantreturns-to-scaleCESproductionfunctionq¼½kρþlρ1=ρ.a.ShowthatMPk¼ðq=kÞ1ρandMPl¼ðq=lÞ1ρ:b.ShowthatRTS¼ðl=kÞ1ρ;usethistoshowthatσ¼1=ð1ρÞ:c.Determinetheoutputelasticitiesforkandl,andshowthattheirsumequals1.d.Provethatql¼∂q∂lσandhencethatlnql¼σln∂q∂l.Note:Thelatterequalityisusefulinempiricalwork,becausewemayapproximate∂q=∂lbythecompetitivelydeterminedwagerate.Hence,σcanbeestimatedfromaregressionoflnðq=lÞonlnw:Chapter9ProductionFunctions317
9.7ConsiderageneralizationoftheproductionfunctioninExample9.3:q¼β0þβ1ffiffiffiffiffiklpþβ2kþβ3l,where0βi1,i¼0,…,3.a.Ifthisfunctionistoexhibitconstantreturnstoscale,whatrestrictionsshouldbeplacedontheparametersβ0,…,β3?b.Showthat,intheconstantreturns-to-scalecase,thisfunctionexhibitsdiminishingmarginalproductivitiesandthatthemarginalproductivityfunctionsarehomogeneousofdegree0.c.Calculateσinthiscase.Althoughσisnotingeneralconstant,forwhatvaluesoftheβ’sdoesσ¼0,1,or∞?9.8ShowthatEuler’stheoremimpliesthat,foraconstantreturns-to-scaleproductionfunction½q¼fðk,lÞ,q¼fk⋅kþfl⋅l:Usethisresulttoshowthat,forsuchaproductionfunction,ifMPl>APlthenMPkmustbenegative.Whatdoesthisimplyaboutwhereproductionmusttakeplace?CanafirmeverproduceatapointwhereAPlisincreasing?AnalyticalProblems9.9LocalreturnstoscaleAlocalmeasureofthereturnstoscaleincorporatedinaproductionfunctionisgivenbythescaleelasticityeq,t¼∂fðtk,tlÞ=∂t⋅t=qevaluatedatt¼l:a.Showthatiftheproductionfunctionexhibitsconstantreturnstoscaletheneq,t¼1:b.Wecandefinetheoutputelasticitiesoftheinputskandlaseq,k¼∂fðk,lÞ∂k⋅kq,eq,l¼∂fðk,lÞ∂l⋅lq.Showthateq,t¼eq,kþeq,l:c.Afunctionthatexhibitsvariablescaleelasticityisq¼ð1þk1l1Þ1:Showthat,forthisfunction,eq,t>1forq<0.5andthateq,t<1forq>0.5:d.Explainyourresultsfrompart(c)intuitively.Hint:Doesqhaveanupperboundforthisproductionfunction?318Part3ProductionandSupply
9.10ReturnstoscaleandsubstitutionAlthoughmuchofourdiscussionofmeasuringtheelasticityofsubstitutionforvariousproductionfunctionshasassumedconstantreturnstoscale,oftenthatassumptionisnotnecessary.Thisproblemillustratessomeofthesecases.a.Infootnote6weshowedthat,intheconstantreturns-to-scalecase,theelasticityofsubstitutionforatwo-inputproductionfunctionisgivenbyσ¼fkflf⋅fkl.SupposenowthatwedefinethehomotheticproductionfunctionFasFðk,lÞ¼½fðk,lÞγ,wherefðk,lÞisaconstantreturns-to-scaleproductionfunctionandγisapositiveexponent.Showthattheelasticityofsubstitutionforthisproductionfunctionisthesameastheelasticityofsubstitutionforthefunctionf:b.ShowhowthisresultcanbeappliedtoboththeCobb-DouglasandCESproductionfunctions.9.11MoreonEuler’stheoremSupposethataproductionfunctionfðx1,x2,…,xnÞishomogeneousofdegreek:Euler’stheoremshowsthatXixifi¼kf,andthisfactcanbeusedtoshowthatthepartialderivativesoffarehomogeneousofdegreek1:a.ProvethatXni¼1Xnj¼1xixjfij¼kðk1Þf:b.Inthecaseofn¼2andk¼1,whatkindofrestrictionsdoestheresultofpart(a)imposeonthesecond-orderpartialderivativef12?Howdoyourconclusionschangewhenk>1ork<1?c.Howwouldtheresultsofpart(b)begeneralizedtoaproductionfunctionwithanynumberofinputs?d.WhataretheimplicationsofthisproblemfortheparametersofthemultivariableCobb-Douglasproductionfunctionfðx1,x2,…,xnÞ¼∏ni¼1xαiiforαi0?SUGGESTIONSFORFURTHERREADINGClark,J.M.“DiminishingReturns.”InEncyclopaediaoftheSocialSciences,vol.5.NewYork:Crowell-CollierandMacmillan,1931,pp.144–f46.Luciddiscussionofthehistoricaldevelopmentofthediminishingreturnsconcept.Douglas,P.H.“AreThereLawsofProduction?”AmericanEconomicReview38(March1948):1–f41.Anicemethodologicalanalysisoftheusesandmisusesofproductionfunctions.Ferguson,C.E.TheNeoclassicalTheoryofProductionandDistribution.NewYork:CambridgeUniversityPress,1969.Athoroughdiscussionofproductionfunctiontheory(asof1970).Gooduseofthree-dimensionalgraphs.Fuss,M.,andMcFadden,D.ProductionEconomics:ADualApproachtoTheoryandApplication.Amsterdam:North-Holland,1980.Anapproachwithaheavyemphasisontheuseofduality.Mas-Collell,A.,M.D.Whinston,andJ.R.Green.Micro-economicTheory.NewYork:OxfordUniversityPress,1995.Chapter5providesasophisticated,ifsomewhatspare,reviewofproductiontheory.Theuseoftheprofitfunction(seeChapter11)isquitesophisticatedandilluminating.Shephard,R.W.TheoryofCostandProductionFunctions.Princeton,NJ:PrincetonUniversityPress,1978.Extendedanalysisofthedualrelationshipbetweenproductionandcostfunctions.Silberberg,E.,andW.Suen.TheStructureofEconomics:AMathematicalAnalysis,3rded.Boston:Irwin/McGraw-Hill,2001.Thoroughanalysisofthedualitybetweenproductionfunctionsandcostcurves.Providesaproofthattheelasticityofsubstitutioncanbederivedasshowninfootnote6ofthischapter.Stigler,G.J.“TheDivisionofLaborIsLimitedbytheExtentoftheMarket.”JournalofPoliticalEconomy59(June1951):185–f93.CarefultracingoftheevolutionofSmith’sideasabouteconomiesofscale.Chapter9ProductionFunctions319
EXTENSIONSMany-InputProductionFunctionsMostoftheproductionfunctionsillustratedinChap-ter9canbeeasilygeneralizedtomany-inputcases.HereweshowthisfortheCobb-DouglasandCEScasesandthenexaminetwoquiteflexibleformsthatsuchproductionfunctionsmighttake.Inalloftheseexamples,theβ’sarenonnegativeparametersandtheninputsarerepresentedbyx1,…,xn:E9.1Cobb-DouglasThemany-inputCobb-Douglasproductionfunctionisgivenbyq¼Yni¼1xβii.(i)a.ThisfunctionexhibitsconstantreturnstoscaleifXni¼1βi¼1.(ii)b.Intheconstant-returns-to-scaleCobb-Douglasfunction,βiistheelasticityofqwithrespecttoinputxi:Because0β<1;eachinputex-hibitsdiminishingmarginalproductivity.c.Anydegreeofincreasingreturnstoscalecanbeincorporatedintothisfunction,dependingonε¼Xni¼1βi.(iii)d.Theelasticityofsubstitutionbetweenanytwoinputsinthisproductionfunctionis1.Thiscanbeshownbyusingthedefinitiongiveninfoot-note7ofthischapter:σij¼∂lnðxi=xjÞ∂lnðfj=fiÞ.Herefjfi¼βjxβj1j∏i6¼jxβiiβixβi1i∏j6¼ixβjj¼βjβi⋅xixj.Hence,lnfjfi¼lnβjβiþlnxixj !andσij¼1:Becausethisparameterissocon-strainedintheCobb-Douglasfunction,thefunctionisgenerallynotusedineconometricanalysesofmicroeconomicdataonfirms.How-ever,thefunctionhasavarietyofgeneralusesinmacroeconomics,asthenextexampleillus-trates.TheSolowgrowthmodelThemany-inputCobb-Douglasproductionfunctionisaprimaryfeatureofmanymodelsofeconomicgrowth.Forexample,Solow’s(1956)pioneeringmodelofequilibriumgrowthcanbemosteasilyderivedusingatwo-inputconstant-returns-to-scaleCobb-DouglasfunctionoftheformY¼AKαL1α,(iv)whereAisatechnicalchangefactorthatcanberepre-sentedbyexponentialgrowthoftheformA¼eat.(v)DividingbothsidesofEquationivbyLyieldsy¼eatkα,(vi)wherey¼Y=Landk¼K=L.Solowshowsthateconomieswillevolvetowardanequilibriumvalueofk(thecapital-laborratio).Hencecross-countrydifferencesingrowthratescanbeaccountedforonlybydifferencesinthetechnicalchangefactor,a:TwofeaturesofEquationviargueforincludingmoreinputsintheSolowmodel.First,theequationasitstandsisincapableofexplainingthelargedifferencesinpercapitaoutputðyÞthatareobservedaroundtheworld.Assumingα¼0:3,say(afigureconsistentwithmanyempiricalstudies),itwouldtakecross-countrydifferencesinK=Lofasmuchas4,000,000-to-1toexplainthe100-to-1differencesinpercapitaincomeobserved—aclearlyunreasonablemagnitude.Byin-troducingadditionalinputs,suchashumancapital,thesedifferencesbecomemoreexplainable.AsecondshortcomingofthesimpleCobb-DouglasformulationoftheSolowmodelisthatitoffersnoexplanationofthetechnicalchangeparameter,a—itsvalueisdetermined“exogenously.”Byaddingaddi-tionalfactors,itbecomeseasiertounderstandhowtheparameteramayrespondtoeconomicincentives.320Part3ProductionandSupply
Thisisthekeyinsightofliteratureon“endogenous”growththeory(forasummary,seeRomer,1996).E9.2CESThemany-inputconstantelasticityofsubstitution(CES)productionfunctionisgivenbyq¼Xβixρihiε=ρ,ρ1.(vii)a.Bysubstitutingmxiforeachoutput,itiseasytoshowthatthisfunctionexhibitsconstantreturnstoscaleforε¼1:Forε>1,thefunc-tionexhibitsincreasingreturnstoscale.b.Theproductionfunctionexhibitsdiminishingmarginalproductivitiesforeachinputbecauseρ1:c.Asinthetwo-inputcase,theelasticityofsub-stitutionhereisgivenbyσ¼11ρ,(viii)andthiselasticityappliestosubstitutionbetweenanytwooftheinputs.CheckingtheCobb-DouglasintheSovietUnionOnewayinwhichthemulti-inputCESfunctionisusedistodeterminewhethertheestimatedsubstitutionparameterðρÞisconsistentwiththevalueimpliedbytheCobb-Douglasðρ¼0,σ¼1Þ:Forexample,inastudyoffivemajorindustriesintheformerSovietUnion,E.Bairam(1991)findsthattheCobb-Douglasprovidesarelativelygoodexplanationofchangesinoutputinmostmajormanufacturingsectors.Onlyforfoodprocessingdoesalowervalueforσseemappropriate.Thenextthreeexamplesillustrateflexible-formproductionfunctionsthatmayapproximateanygen-eralfunctionofninputs.IntheChapter10exten-sions,weexaminethecostfunctionanaloguestosomeofthesefunctions,whicharemorewidelyusedthantheproductionfunctionsthemselves.E9.3NestedproductionfunctionsInsomeapplications,Cobb-DouglasandCESpro-ductionfunctionsarecombinedintoa“nested”singlefunction.Toaccomplishthis,theoriginalnprimaryinputsarecategorizedinto,say,mgeneralclassesofinputs.Thespecificinputsineachofthesecategoriesarethenaggregatedintoasinglecompositeinput,andthefinalproductionfunctionisafunctionofthesemcomposites.Forexample,assumetherearethreepri-maryinputs,x1,x2,x3:Suppose,however,thatx1andx2arerelativelycloselyrelatedintheirusebyfirms(forexample,capitalandenergy)whereasthethirdinput(labor)isrelativelydistinct.ThenonemightwanttouseaCESaggregatorfunctiontoconstructacompos-iteinputforcapitalservicesoftheformx4¼½γxρ1þð1γÞxρ21=ρ:(ix)ThenthefinalproductionfunctionmighttakeaCobb-Douglasform:q¼xα3xβ4:(x)Thisstructureallowstheelasticityofsubstitutionbe-tweenx1andx2totakeonanyvalue½σ¼1=ð1ρÞbutconstrainstheelasticityofsubstitutionbetweenx3andx4tobeone.Avarietyofotheroptionsareavail-abledependingonhowpreciselytheembeddedfunc-tionsarespecified.Thedynamicsofcapital/energysubstitutabilityNestedproductionfunctionshavebeenwidelyusedinstudiesthatseektomeasuretheprecisenatureofthesubstitutabilitybetweencapitalandenergyinputs.Forexample,AtkesonandKehoe(1999)useamodelratherclosetotheonespecifiedinEquationsixandxtotrytoreconciletwofactsaboutthewayinwhichenergypricesaffecttheeconomy:(1)Overtime,useofenergyinproductionseemsratherunresponsivetoprice(atleastintheshort-run);and(2)acrosscoun-tries,energypricesseemtohavealargeinfluenceoverhowmuchenergyisused.ByusingacapitalserviceequationoftheformgiveninEquationixwithalowdegreeofsubstitutabilityðρ¼2:3Þ—alongwithaCobb-Douglasproductionfunctionthatcombineslaborwithcapitalservices—theyareabletoreplicatethefactsaboutenergypricesfairlywell.Theyconclude,however,thatthismodelimpliesamuchmorenegativeeffectofhigherenergypricesoneconomicgrowththanseemsactuallytohavebeenthecase.Hencetheyultimatelyoptforamorecomplexwayofmodelingproductionthatstressesdifferencesinenergyuseamongcapitalinvestmentsmadeatdifferentdates.E9.4GeneralizedLeontiefq¼Xni¼1Xnj¼1βijffiffiffiffiffiffiffiffiffixixjp,whereβij¼βji.Chapter9ProductionFunctions321
a.ThefunctionconsideredinProblem9.7isasimplecaseofthisfunctionforthecasen¼2:Forn¼3,thefunctionwouldhavelineartermsinthethreeinputsalongwiththreeradi-caltermsrepresentingallpossiblecross-pro-ductsoftheinputs.b.Thefunctionexhibitsconstantreturnstoscale,ascanbeshownbyusingmxi.Increasingreturnstoscalecanbeincorporatedintothefunctionbyusingthetransformationq0¼qε,ε>1.c.Becauseeachinputappearsbothlinearlyandundertheradical,thefunctionexhibitsdimin-ishingmarginalproductivitiestoallinputs.d.Therestrictionβij¼βjiisusedtoensuresym-metryofthesecond-orderpartialderivatives.E9.5Transloglnq¼β0þXni¼1βilnxiþ0:5Xni¼1Xnj¼1βijlnxilnxj;βij¼βji:a.NotethattheCobb-Douglasfunctionisaspe-cialcaseofthisfunctionwhereβ0¼βij¼0foralli,j:b.AsfortheCobb-Douglas,thisfunctionmayassumeanydegreeofreturnstoscale.IfXni¼1βi¼1andXnj¼1βij¼0foralli,thenthisfunctionexhibitsconstantreturnstoscale.Theproofrequiressomecareindealingwiththedoublesummation.c.Again,theconditionβij¼βjiisrequiredtoensureequalityofthecross-partialderivatives.ImmigrationBecausethetranslogproductionfunctionincorporatesalargenumberofsubstitutionpossibilitiesamongvar-iousinputs,ithasbeenwidelyusedtostudythewaysinwhichnewlyarrivedworkersmaysubstituteforexist-ingworkers.Ofparticularinterestisthewayinwhichtheskilllevelofimmigrantsmayleadtodifferingreac-tionsinthedemandforskilledandunskilledworkersinthedomesticeconomy.StudiesoftheUnitedStatesandmanyothercountries(Canada,Germany,France,andsoforth)havesuggestedthattheoverallsizeofsucheffectsismodest,especiallygivenrelativelysmallimmigrationflows.Butthereissomeevidencethatunskilledimmigrantworkersmayactassubstitutesforunskilleddomesticworkersbutascomplementstoskilleddomesticworkers.Henceincreasedimmigra-tionflowsmayexacerbatetrendstowardrisingwagedifferentials.Forasummary,seeBorjas(1994).ReferencesAtkeson,Andrew,andPatrickJ.Kehoe.“ModelsofEnergyUse:Putty-PuttyversusPutty-Clay.”AmericanEconomicReview(September1999):1028–43.Bairam,Erkin.“ElasticityofSubstitution,TechnicalProg-ressandReturnstoScaleinBranchesofSovietIndustry:ANewCESProductionFunctionApproach.”JournalofAppliedEconomics(January–March1991):91–f96.Borjas,G.J.“TheEconomicsofImmigration.”JournalofEconomicLiterature(December1994):1667–f1717.Romer,David.AdvancedMacroeconomics.NewYork:McGraw-Hill,1996.Solow,R.M.“AContributiontotheTheoryofEconomicGrowth.”QuarterlyJournalofEconomics(February1956):65–f94.322Part3ProductionandSupply
CHAPTER10CostFunctionsInthischapterweillustratethecoststhatafirmincurswhenitproducesoutput.InChapter11,wewillpursuethistopicfurtherbyshowinghowfirmsmakeprofit-maximizinginputandoutputdecisions.DEFINITIONSOFCOSTSBeforewecandiscussthetheoryofcosts,somedifficultiesabouttheproperdefinitionof“costs”mustbeclearedup.Specifically,wemustdifferentiatebetween(1)accountingcostand(2)economiccost.Theaccountant’sviewofcoststressesout-of-pocketexpenses,historicalcosts,depreciation,andotherbookkeepingentries.Theeconomist’sdefinitionofcost(whichinobviouswaysdrawsonthefundamentalopportunity-costnotion)isthatthecostofanyinputisgivenbythesizeofthepaymentnecessarytokeeptheresourceinitspresentemployment.Alternatively,theeconomiccostofusinganinputiswhatthatinputwouldbepaidinitsnextbestuse.Onewaytodistinguishbetweenthesetwoviewsistoconsiderhowthecostsofvariousinputs(labor,capital,andentrepreneurialservices)aredefinedundereachsystem.LaborcostsEconomistsandaccountantsregardlaborcostsinmuchthesameway.Toaccountants,expendituresonlaborarecurrentexpensesandhencecostsofproduction.Foreconomists,laborisanexplicitcost.Laborservices(labor-hours)arecontractedatsomehourlywagerateðwÞ,anditisusuallyassumedthatthisisalsowhatthelaborserviceswouldearnintheirbestalternativeemployment.Thehourlywage,ofcourse,includescostsoffringebenefitsprovidedtoemployees.CapitalcostsInthecaseofcapitalservices(machine-hours),thetwoconceptsofcostdiffer.Incalculatingcapitalcosts,accountantsusethehistoricalpriceoftheparticularmachineunderinvestigationandapplysomemore-or-lessarbitrarydepreciationruletodeterminehowmuchofthatmachine’soriginalpricetochargetocurrentcosts.Economistsregardthehistoricalpriceofamachineasa“sunkcost,”whichisirrelevanttooutputdecisions.Theyinsteadregardtheimplicitcostofthemachinetobewhatsomeoneelsewouldbewillingtopayforitsuse.Thusthecostofonemachine-houristherentalrateforthatmachineinitsbestalternativeuse.Bycontinuingtousethemachineitself,thefirmisimplicitlyforgoingwhatsomeoneelsewouldbewillingtopaytouseit.Thisrentalrateforonemachine-hourwillbedenotedbyv.11Sometimesthesymbolrischosentorepresenttherentalrateoncapital.Becausethisvariableisoftenconfusedwiththerelatedbutdistinctconceptofthemarketinterestrate,analternativesymbolwaschosenhere.TheexactrelationshipbetweenvandtheinterestrateisexaminedinChapter17.323
CostsofentrepreneurialservicesTheownerofafirmisaresidualclaimantwhoisentitledtowhateverextrarevenuesorlossesareleftafterpayingotherinputcosts.Toanaccountant,thesewouldbecalledprofits(whichmightbeeitherpositiveornegative).Economists,however,askwhetherowners(orentre-preneurs)alsoencounteropportunitycostsbyworkingataparticularfirmordevotingsomeoftheirfundstoitsoperation.Ifso,theseservicesshouldbeconsideredaninput,andsomecostshouldbeimputedtothem.Forexample,supposeahighlyskilledcomputerprogrammerstartsasoftwarefirmwiththeideaofkeepingany(accounting)profitsthatmightbegener-ated.Theprogrammer’stimeisclearlyaninputtothefirm,andacostshouldbeinputtedforit.Perhapsthewagethattheprogrammermightcommandifheorsheworkedforsomeoneelsecouldbeusedforthatpurpose.Hencesomepartoftheaccountingprofitsgeneratedbythefirmwouldbecategorizedasentrepreneurialcostsbyeconomists.Economicprofitswouldbesmallerthanaccountingprofitsandmightbenegativeiftheprogrammer’sopportunitycostsexceededtheaccountingprofitsbeingearnedbythebusiness.Similarargumentsapplytothecapitalthatanentrepreneurprovidestothefirm.EconomiccostsInthisbook,notsurprisingly,weuseeconomists’definitionofcost.DEFINITIONEconomiccost.Theeconomiccostofanyinputisthepaymentrequiredtokeepthatinputinitspresentemployment.Equivalently,theeconomiccostofaninputistheremunerationtheinputwouldreceiveinitsbestalternativeemployment.Useofthisdefinitionisnotmeanttoimplythataccountants’conceptsareirrelevanttoeconomicbehavior.Indeed,accountingproceduresareintegrallyimportanttoanymanager’sdecision-makingprocessbecausetheycangreatlyaffecttherateoftaxationtobeappliedagainstprofits.Accountingdataarealsoreadilyavailable,whereasdataoneconomiccostsmustoftenbedevelopedseparately.Economists’definitions,however,dohavethedesirablefeaturesofbeingbroadlyapplicabletoallfirmsandofformingaconceptuallyconsistentsystem.Theythereforearebestsuitedforageneraltheoreticalanalysis.TwosimplifyingassumptionsAsastart,wewillmaketwosimplificationsabouttheinputsafirmuses.First,weassumethatthereareonlytwoinputs:homogeneouslabor(l,measuredinlabor-hours)andhomoge-neouscapital(k,measuredinmachine-hours).Entrepreneurialcostsareincludedincapitalcosts.Thatis,weassumethattheprimaryopportunitycostsfacedbyafirm’sownerarethoseassociatedwiththecapitalthattheownerprovides.Second,weassumethatinputsarehiredinperfectlycompetitivemarkets.Firmscanbuy(orsell)allthelabororcapitalservicestheywantattheprevailingrentalrates(wandv).Ingraphicterms,thesupplycurvefortheseresourcesishorizontalattheprevailingfactorprices.Bothwandvaretreatedas“parameters”inthefirm’sdecisions;thereisnothingthefirmcandotoaffectthem.Theseconditionswillberelaxedinlaterchapters(notablyChapter16),butforthemomenttheprice-takerassumptionisaconvenientandusefulonetomake.EconomicprofitsandcostminimizationTotalcostsforthefirmduringaperiodarethereforegivenbytotalcosts¼C¼wlþvk,(10.1)where,asbefore,landkrepresentinputusageduringtheperiod.Assumingthefirmproducesonlyoneoutput,itstotalrevenuesaregivenbythepriceofitsproductðpÞtimesits324Part3ProductionandSupply
totaloutput[q¼fðk,lÞ,wherefðk,lÞisthefirm’sproductionfunction].EconomicprofitsðπÞarethenthedifferencebetweentotalrevenuesandtotaleconomiccosts.DEFINITIONEconomicprofits.EconomicprofitsðπÞarethedifferencebetweenafirm’stotalrevenuesanditstotalcosts:π¼totalrevenuetotalcost¼pqwlvk¼pfðk,lÞwlvk.(10.2)Equation10.2showsthattheeconomicprofitsobtainedbyafirmareafunctionoftheamountofcapitalandlaboremployed.If,aswewillassumeinmanyplacesinthisbook,thefirmseeksmaximumprofits,thenwemightstudyitsbehaviorbyexamininghowkandlarechosensoastomaximizeEquation10.2.Thiswould,inturn,leadtoatheoryofsupplyandtoatheoryofthe“deriveddemand”forcapitalandlaborinputs.Inthenextchapterwewilltakeupthosesubjectsindetail.Here,however,wewishtodevelopatheoryofcoststhatissomewhatmoregeneralandmightapplytofirmsthatarenotnecessarilyprofitmaximizers.Hence,webeginthestudyofcostsbyfinessing,forthemoment,adiscussionofoutputchoice.Thatis,weassumethatforsomereasonthefirmhasdecidedtoproduceaparticularoutputlevel(say,q0).Thefirm’srevenuesarethereforefixedatpq0.Nowwewishtoexaminehowthefirmcanproduceq0atminimalcosts.COST-MINIMIZINGINPUTCHOICESMathematically,thisisaconstrainedminimizationproblem.Butbeforeproceedingwitharigoroussolution,itisusefultostatetheresulttobederivedwithanintuitiveargument.Tominimizethecostofproducingagivenlevelofoutput,afirmshouldchoosethatpointontheq0isoquantatwhichtherateoftechnicalsubstitutionoflforkisequaltotheratiow=v:Itshouldequatetherateatwhichkcanbetradedforlinproductiontotherateatwhichtheycanbetradedinthemarketplace.Supposethatthiswerenottrue.Inparticular,supposethatthefirmwereproducingoutputlevelq0usingk¼10,l¼10,andassumethattheRTSwere2atthispoint.Assumealsothatw¼$1,v¼$1,andhencethatw=v¼1(whichisunequalto2).Atthisinputcombination,thecostofproducingq0is$20.Itiseasytoshowthisisnottheminimalinputcost.Forexample,q0canalsobeproducedusingk¼8andl¼11;wecangiveuptwounitsofkandkeepoutputconstantatq0byaddingoneunitofl.Butatthisinputcombination,thecostofproducingq0is$19andhencetheinitialinputcombinationwasnotoptimal.AcontradictionsimilartothisonecanbedemonstratedwhenevertheRTSandtheratiooftheinputcostsdiffer.MathematicalanalysisMathematically,weseektominimizetotalcostsgivenq¼fðk,lÞ¼q0.SettinguptheLagrangianexpressionℒ¼wlþvkþλ½q0fðk,lÞ,(10.3)thefirst-orderconditionsforaconstrainedminimumare∂ℒ∂l¼wλ∂f∂l¼0,∂ℒ∂k¼vλ∂f∂k¼0,∂ℒ∂λ¼q0fðk,lÞ¼0,(10.4)Chapter10CostFunctions325
or,dividingthefirsttwoequations,wv¼∂f=∂l∂f=∂k¼RTSðlforkÞ.(10.5)Thissaysthatthecost-minimizingfirmshouldequatetheRTSforthetwoinputstotheratiooftheirprices.FurtherinterpretationsThesefirst-orderconditionsforminimalcostscanbemanipulatedinseveraldifferentwaystoyieldinterestingresults.Forexample,cross-multiplyingEquation10.5givesfkv¼flw.(10.6)Thatis:forcoststobeminimized,themarginalproductivityperdollarspentshouldbethesameforallinputs.Ifincreasingoneinputpromisedtoincreaseoutputbyagreateramountperdollarspentthandidanotherinput,costswouldnotbeminimal—thefirmshouldhiremoreoftheinputthatpromisesabigger“bangperbuck”andlessofthemorecostly(intermsofproductivity)input.Anyinputthatcannotmeetthecommonbenefit-costratiodefinedinEquation10.6shouldnotbehiredatall.Equation10.6can,ofcourse,alsobederivedfromEquation10.4,butitismoreinstructivetoderiveitsinverse:wfl¼vfk¼λ.(10.7)Thisequationreportstheextracostofobtaininganextraunitofoutputbyhiringeitheraddedlabororaddedcapitalinput.Becauseofcostminimization,thismarginalcostisthesamenomatterwhichinputishired.ThiscommonmarginalcostisalsomeasuredbytheLagrangianmultiplierfromthecost-minimizationproblem.Asisthecaseforallconstrainedoptimizationproblems,heretheLagrangianmultipliershowshowmuchinextracostswouldbeincurredbyincreasingtheoutputconstraintslightly.Becausemarginalcostplaysanimportantroleinafirm’ssupplydecisions,wewillreturntothisfeatureofcostminimizationfrequently.GraphicalanalysisCostminimizationisshowngraphicallyinFigure10.1.Giventheoutputisoquantq0,wewishtofindtheleastcostlypointontheisoquant.Linesshowingequalcostareparallelstraightlineswithslopesw=v.ThreelinesofequaltotalcostareshowninFigure10.1;C1
So,let’sstartwithasimpleexample.Whatwewishtodoisshowhowtotalcostsdependoninputcostsandonquantityproduced.Inthefixed-proportionscase,weknowthatproduc-tionwilloccuratavertexoftheL-shapedisoquantswhereq¼ak¼bl.Hence,totalcostsaretotalcosts¼Cv,w,qðÞ¼vkþwl¼vqaþwqb¼qvaþwb.(10.21)Thisisindeedthesortoffunctionwewantbecauseitstatestotalcostsasafunctionofv,w,andqonlytogetherwithsomeparametersoftheunderlyingproductionfunction.Becauseoftheconstantreturns-to-scalenatureofthisproductionfunction,ittakesthespecialformCðv,w,qÞ¼qCðv,w,1Þ.(10.22)Thatis,totalcostsaregivenbyoutputtimesthecostofproducingoneunit.Increasesininputpricesclearlyincreasetotalcostswiththisfunction,andtechnicalimprovementsthattaketheformofincreasingtheparametersaandbreducecosts.2.Cobb-Douglas:q¼fðk,lÞ¼kαlβ.Thisisourfirstexampleofburdensomecomputation,butwecanclarifytheprocessbyrecognizingthatthefinalgoalistousetheresultsofcostminimizationtoreplacetheinputsintheproductionfunctionwithcosts.FromExample10.1weknowthatcostminimizationrequiresthatwv¼βα⋅klandsok¼αβ⋅wv⋅l.Substitutionintotheproductionfunctionpermitsasolutionforlaborinputintermsofq,v,andwasq¼kαlβ¼αβ⋅wvαlαþβorl¼q1=ðαþβÞβαα=ðαþβÞwα=ðαþβÞvα=ðαþβÞ.(10.23)Asimilarsetofmanipulationsgivesk¼q1=ðαþβÞαββ=ðαþβÞwβ=ðαþβÞvβ=ðαþβÞ.(10.24)NowwearereadytoderivetotalcostsasCðv,w,qÞ¼vkþwl¼q1=ðαþβÞBvα=ðαþβÞwβ=ðαþβÞ,(10.25)whereB¼ðαþβÞαα=ðαþβÞββ=ðαþβÞ—aconstantthatinvolvesonlytheparametersαandβ.Althoughthisderivationwasabitmessy,severalinterestingaspectsofthisCobb-Douglascostfunctionarereadilyapparent.First,whetherthefunctionisaconvex,linear,orconcavefunctionofoutputdependsonwhethertherearedecreasingreturnstoscaleðαþβ<1Þ,constantreturnstoscaleðαþβ¼1Þ,orincreasingreturnstoscaleðαþβ>1Þ.Second,anincreaseinanyinputpriceincreasescosts,withtheextentoftheincreasebeingdeterminedbytherelativeimportanceoftheinputasreflectedbythesizeofitsexponentintheproductionfunction.Finally,thecostfunctionishomogeneousofdegree1intheinputprices—ageneralfeatureofallcostfunctions,asweshallshowshortly.3.CES:q¼fðk,lÞ¼ðkρþlρÞγ=ρ.Forthiscase,yourauthorwillmercifullyspareyouthealgebra.Toderivethetotalcostfunction,weusethecost-minimizationconditionspecifiedinEquation10.15,solveforeachinputindividually,andeventuallygetCðv,w,qÞ¼vkþwl¼q1=γðvρ=ðρ1Þþwρ=ðρ1ÞÞðρ1Þ=ρ¼q1=γðv1σþw1σÞ1=ð1σÞ,(10.26)wheretheelasticityofsubstitutionisgivenbyσ¼1=ð1ρÞ.OnceagaintheshapeofthetotalcostisdeterminedbythescaleparameterðγÞforthisproductionfunction,andthecostfunctionisincreasinginbothoftheinputprices.Thefunctionisalsohomogeneousofdegree1inthoseprices.OnelimitingfeatureofthisformoftheCESfunctionisthatthe(continued)Chapter10CostFunctions335
EXAMPLE10.2CONTINUEDinputsaregivenequalweights—hencetheirpricesareequallyimportantinthecostfunc-tion.ThisfeatureoftheCESiseasilygeneralized,however(seeProblem10.7).QUERY:HowarethevarioussubstitutionpossibilitiesinherentintheCESfunctionreflectedintheCEScostfunctioninEquation10.26?PropertiesofcostfunctionsTheseexamplesillustratesomepropertiesoftotalcostfunctionsthatarequitegeneral.1.Homogeneity.ThetotalcostfunctionsinExample10.3areallhomogeneousofdegree1intheinputprices.Thatis,adoublingofinputpriceswillpreciselydoublethecostofproducinganygivenoutputlevel(youmightcheckthisoutforyourself).Thisisapropertyofallpropercostfunctions.Whenallinputpricesdouble(orareincreasedbyanyuniformproportion),theratioofanytwoinputpriceswillnotchange.BecausecostminimizationrequiresthattheratioofinputpricesbesetequaltotheRTSalongagivenisoquant,thecost-minimizinginputcombinationalsowillnotchange.Hence,thefirmwillbuyexactlythesamesetofinputsandpaypreciselytwiceasmuchforthem.Oneimplicationofthisresultisthatapure,uniforminflationinallinputcostswillnotchangeafirm’sinputdecisions.Itscostcurveswillshiftupwardinprecisecorrespon-dencetotherateofinflation.2.Totalcostfunctionsarenondecreasinginq,v,andw.Thispropertyseemsobvious,butitisworthdwellingonitabit.Becausecostfunctionsarederivedfromacost-minimizationprocess,anydeclineincostsfromanincreaseinoneofthefunction’sargumentswouldleadtoacontradiction.Forexample,ifanincreaseinoutputfromq1toq2causedtotalcoststodecline,itmustbethecasethatthefirmwasnotminimizingcostsinthefirstplace.Itshouldhaveproducedq2andthrownawayanoutputofq2q1,therebyproducingq1atalowercost.Similarly,ifanincreaseinthepriceofaninputeverreducedtotalcost,thefirmcouldnothavebeenminimizingitscostsinthefirstplace.Toseethis,supposethefirmwasusingtheinputcombinationk1,l1andthatwincreases.Clearlythatwillincreasethecostoftheinitialinputcombination.Butifchangesininputchoicesactuallycausedtotalcoststodecline,thatmustimplythattherewasalower-costinputmixthank1,l1initially.Hencewehaveacontradiction,andthispropertyofcostfunctionsisestablished.73.Totalcostfunctionsareconcaveininputprices.Itisprobablyeasiesttoillustratethispropertywithagraph.Figure10.6showstotalcostsforvariousvaluesofaninputprice,say,w,holdingqandvconstant.Supposethatinitiallyawagerateofw1prevails7Aformalproofcouldalsobebasedontheenvelopetheoremasappliedtoconstrainedminimizationproblems.ConsidertheLagrangianexpressioninEquation10.3.AswaspointedoutinChapter2,wecancalculatethechangeintheobjectiveinsuchanexpression(here,totalcost)withrespecttoachangeinavariablebydifferentiatingtheLagrangianexpression.Performingthisdifferentiationyields∂C∂q¼∂ℒ∂q¼λð¼MCÞ0,∂C∂v¼∂ℒ∂v¼k0,∂C∂w¼∂ℒ∂w¼l0.Notonlydotheseenveloperesultsprovethispropertyofcostfunctions,theyalsoarequiteusefulintheirownright,aswewillshowlaterinthischapter.336Part3ProductionandSupply
andthatthetotalcostsassociatedwithproducingq1aregivenbyCðv,w1,q1Þ.Ifthefirmdidnotchangeitsinputmixinresponsetochangesinwages,thenitstotalcostcurvewouldbelinearasreflectedbythelineCPSEUDOð_v,w,q1Þ¼_v_k1þw_l1inthefigure.Butacost-minimizingfirmprobablywouldchangetheinputmixitusestoproduceq1whenwageschange,andtheseactualcosts½Cðv,w,q1Þwouldfallbelowthe“pseudo”costs.Hence,thetotalcostfunctionmusthavetheconcaveshapeshowninFigure10.6.Oneimplicationofthisfindingisthatcostswillbelowerwhenafirmfacesinputpricesthatfluctuatearoundagivenlevelthanwhentheyremainconstantatthatlevel.Withfluctuatinginputprices,thefirmcanadaptitsinputmixtotakeadvantageofsuchfluctuationsbyusingalotof,say,laborwhenitspriceislowandeconomizingonthatinputwhenitspriceishigh.4.Averageandmarginalcosts.Some,butnotall,ofthesepropertiesoftotalcostfunctionscarryovertotheirrelatedaverageandmarginalcostfunctions.Homogeneityisonepropertythatcarriesoverdirectly.BecauseCðtv,tw,qÞ¼tCðv,w,qÞ,wehaveACtv,tw,qðÞ¼Cðtv,tw,qÞq¼tCðv,w,qÞq¼tACðv,w,qÞ(10.27)and8MCtv,tw,qðÞ¼∂Cðtv,tw,qÞ∂q¼t∂Cðv,w,qÞ∂q¼tMCðv,w,qÞ.(10.28)FIGURE10.6CostFunctionsAreConcaveinInputPricesWithawagerateofw1,totalcostsofproducingq1areCðv,w1,q1Þ.Ifthefirmdoesnotchangeitsinputmix,costsofproducingq1wouldfollowthestraightlineCPSEUDO.Withinputsubstitution,actualcostsCðv,w,q1Þwillfallbelowthisline,andhencethecostfunctionisconcaveinw.CostsC(v,w,q1)C(v,w1,q1)ww1CPSEUDO8Thisresultdoesnotviolatethetheoremthatthederivativeofafunctionthatishomogeneousofdegreekishomogeneousofdegreek−1,becausewearedifferentiatingwithrespecttoqandtotalcostsarehomogeneouswithrespecttoinputpricesonly.Chapter10CostFunctions337
Theeffectsofchangesinq,v,andwonaverageandmarginalcostsaresometimesambiguous,however.Wehavealreadyshownthataverageandmarginalcostcurvesmayhavenegativelyslopedsegments,soneitherACnorMCisnondecreasinginq.Becausetotalcostsmustnotdecreasewhenaninputpricerises,itisclearthataveragecostisincreasinginwandv.Butthecaseofmarginalcostismorecomplex.Themaincomplicationarisesbecauseofthepossibilityofinputinferiority.Inthat(admittedlyrare)case,anincreaseinaninferiorinput’spricewillactuallycausemarginalcosttodecline.Althoughtheproofofthisisrelativelystraightforward,9anintuitiveexpla-nationforitiselusive.Still,inmostcases,itseemsclearthattheincreaseinthepriceofaninputwillincreasemarginalcostaswell.InputsubstitutionAchangeinthepriceofaninputwillcausethefirmtoalteritsinputmix.Hence,afullstudyofhowcostcurvesshiftwheninputpriceschangemustalsoincludeanexaminationofsubstitutionamonginputs.Tostudythisprocess,economistshavedevelopedasomewhatdifferentmeasureoftheelasticityofsubstitutionthantheoneweencounteredinthetheoryofproduction.Specifically,wewishtoexaminehowtheratioofinputusage(k=l)changesinresponsetoachangeinw=v,whileholdingqconstant.Thatis,wewishtoexaminethederivative∂ðk=lÞ∂ðw=vÞ(10.29)alonganisoquant.Puttingthisinproportionaltermsass¼∂ðk=lÞ∂ðw=vÞ⋅w=vk=l¼∂lnk=l∂lnw=v(10.30)givesanalternativeandmoreintuitivedefinitionoftheelasticityofsubstitution.10Inthetwo-inputcase,smustbenonnegative;anincreaseinw=vwillbemetbyanincreaseink=l(or,inthelimitingfixed-proportionscase,k=lwillstayconstant).Largevaluesofsindicatethatfirmschangetheirinputproportionssignificantlyinresponsetochangesinrelativeinputprices,whereaslowvaluesindicatethatchangesininputpriceshaverelativelylittleeffect.SubstitutionwithmanyinputsWhenthereareonlytwoinputs,theelasticityofsubstitutiondefinedinEquation10.30isidenticaltotheconceptwedefinedinChapter9(seeEquation9.32).Thiscanbeshownbyrememberingthatcostminimization11requiresthatthefirmequateitsRTS(oflfork)totheinputpriceratiow=v.ThemajoradvantageofthedefinitionoftheelasticityofsubstitutioninEquation10.30isthatitiseasiertogeneralizetomanyinputsthanisthedefinitionbasedontheproductionfunction.Specifically,supposetherearemanyinputstotheproductionprocessðx1,x2,…,xnÞthatcanbehiredatcompetitiverentalratesðw1,w2,…,wnÞ.ThentheelasticityofsubstitutionbetweenanytwoinputsðsijÞisdefinedasfollows.9Theprooffollowstheenvelopetheoremresultspresentedinfootnote7.BecausetheMCfunctioncanbederivedbydifferentiationfromtheLagrangianforcostminimization,wecanuseYoung’stheoremtoshow∂MC∂v¼∂ð∂ℒ=∂qÞ∂v¼∂2ℒ∂v∂q¼∂2ℒ∂q∂v¼∂k∂q.Hence,ifcapitalisanormalinput,anincreaseinvwillraiseMCwhereas,ifcapitalisinferior,anincreaseinvwillactuallyreduceMC.10ThisdefinitionisusuallyattributedtoR.G.D.Allen,whodevelopeditinanalternativeforminhisMathematicalAnalysisforEconomists(NewYork:St.Martin’sPress,1938),pp.504–9.11InExample10.1wefoundthat,fortheCESproductionfunction,costminimizationrequiresthatk=l¼ðw=vÞσ,solnðk=lÞ¼σlnðw=vÞandthereforesk,l¼∂lnðk=lÞ=∂lnðw=vÞ¼σ.338Part3ProductionandSupply
DEFINITIONElasticityofsubstitution.Theelasticityofsubstitution12betweeninputsxiandxjisgivenbysi,j¼∂ðxi=xjÞ∂ðwj=wiÞ⋅wj=wixi=xj¼∂lnðxi=xjÞ∂lnðwj=wiÞ,(10.31)whereoutputandallotherinputpricesareheldconstant.Themajoradvantageofthisdefinitioninamulti-inputcontextisthatitprovidesthefirmwiththeflexibilitytoadjustinputsotherthanxiandxj(whileholdingoutputconstant)wheninputpriceschange.Forexample,amajortopicinthetheoryoffirms’inputchoicesistodescribetherelationshipbetweencapitalandenergyinputs.ThedefinitioninEquation10.31wouldpermitaresearchertostudyhowtheratioofenergytocapitalinputchangeswhenrelativeenergypricesrisewhilepermittingthefirmtomakeanyadjustmentstolaborinput(whosepricehasnotchanged)thatwouldberequiredforcostminimization.Hencethiswouldgivearealisticpictureofhowfirmsactuallybehavewithregardtowhetherenergyandcapitalaremorelikesubstitutesorcomplements.Laterinthischapterwewilllookatthisdefinitioninabitmoredetail,becauseitiswidelyusedinempiricalstudiesofproduction.QuantitativesizeofshiftsincostcurvesWehavealreadyshownthatincreasesinaninputpricewillraisetotal,average,and(exceptintheinferiorinputcase)marginalcosts.Wearenowinapositiontojudgetheextentofsuchincreases.First,andmostobviously,theincreaseincostswillbeinfluencedimportantlybytherelativesignificanceoftheinputintheproductionprocess.Ifaninputconstitutesalargefractionoftotalcosts,anincreaseinitspricewillraisecostssignificantly.Ariseinthewageratewouldsharplyincreasehome-builders’costs,becauselaborisamajorinputinconstruc-tion.Ontheotherhand,apriceriseforarelativelyminorinputwillhaveasmallcostimpact.Anincreaseinnailpriceswillnotraisehomecostsverymuch.Alessobviousdeterminantoftheextentofcostincreasesisinputsubstitutability.Iffirmscaneasilysubstituteanotherinputfortheonethathasriseninprice,theremaybelittleincreaseincosts.Increasesincopperpricesinthelate1960s,forexample,hadlittleimpactonelectricutilities’costsofdistributingelectricity,becausetheyfoundtheycouldeasilysubsti-tutealuminumforcoppercables.Alternatively,ifthefirmfindsitdifficultorimpossibletosubstitutefortheinputthathasbecomemorecostly,thencostsmayriserapidly.Thecostofgoldjewelry,alongwiththepriceofgold,roserapidlyduringtheearly1970s,becausetherewassimplynosubstitutefortherawinput.Itispossibletogiveaprecisemathematicalstatementofthequantitativesizesofalloftheseeffectsbyusingtheelasticityofsubstitution.Todoso,however,wouldriskfurtherclutteringthebookwithsymbols.13Forourpurposes,itissufficienttorelyonthepreviousintuitivediscussion.Thisshouldserveasareminderthatchangesinthepriceofaninputwillhavetheeffectofshiftingfirms’costcurves,withthesizeoftheshiftdependingontherelativeimportanceoftheinputandonthesubstitutionpossibilitiesthatareavailable.TechnicalchangeTechnicalimprovementsallowthefirmtoproduceagivenoutputwithfewerinputs.Suchimprovementsobviouslyshifttotalcostsdownward(ifinputpricesstayconstant).Although12ThisdefinitionisattributedtotheJapaneseeconomistM.Morishima,andtheseelasticitiesaresometimesreferredtoas“Morishimaelasticities.”Inthisversion,theelasticityofsubstitutionforsubstituteinputsispositive.SomeauthorsreversetheorderofsubscriptsinthedenominatorofEquation10.31,andinthisusagetheelasticityofsubstitutionforsubstituteinputsisnegative.13ForacompletestatementseeFerguson,NeoclassicalTheoryofProductionandDistribution(Cambridge:CambridgeUniversityPress,1969),pp.154–60.Chapter10CostFunctions339
theactualwayinwhichtechnicalchangeaffectsthemathematicalformofthetotalcostcurvecanbecomplex,therearecaseswhereonemaydrawsimpleconclusions.Suppose,forexample,thattheproductionfunctionexhibitsconstantreturnstoscaleandthattechnicalchangeentersthatfunctionasdescribedinChapter9(thatis,q¼AðtÞfðk,lÞwhereAð0Þ¼1Þ.Inthiscase,totalcostsintheinitialperiodaregivenbyC0¼C0ðv,w,qÞ¼qC0ðv,w,1Þ.(10.32)Becausethesameinputsthatproducedoneunitofoutputinperiod0willproduceAðtÞunitsofoutputinperiodt,weknowthatCtðv,w,AðtÞÞ¼AðtÞCtðv,w,1Þ¼C0ðv,w,1Þ;(10.33)therefore,wecancomputethetotalcostfunctioninperiodtasCtv,w,qðÞ¼qCtv,w,1ðÞ¼qC0ðv,w,1ÞAðtÞ¼C0ðv,w,qÞAðtÞ.(10.34)Hence,totalcostsfallovertimeattherateoftechnicalchange.Notethatinthiscasetechnicalchangeis“neutral”inthatitdoesnotaffectthefirm’sinputchoices(solongasinputpricesstayconstant).Thisneutralityresultmightnotholdincaseswheretechnicalprogresstakesamorecomplexformorwheretherearevariablereturnstoscale.Eveninthesemorecomplexcases,however,technicalimprovementswillcausetotalcoststofall.EXAMPLE10.3ShiftingtheCobb-DouglasCostFunctionInExample10.2wecomputedtheCobb-DouglascostfunctionasCðv,w,qÞ¼q1=ðαþβÞBvα=ðαþβÞwβ=ðαþβÞ,(10.35)whereB¼ðαþβÞαα=ðαþβÞββ=ðαþβÞ.AsinthenumericalillustrationinExample10.1,let’sassumethatα¼β¼0.5,inwhichcasethetotalcostfunctionisgreatlysimplified:Cðv,w,qÞ¼2qv0.5w0.5.(10.36)Thisfunctionwillyieldatotalcostcurverelatingtotalcostsandoutputifwespecifyparticularvaluesfortheinputprices.If,asbefore,weassumev¼3andw¼12,thentherelationshipisCð3,12,qÞ¼2qffiffiffiffiffiffi36p¼12q,(10.37)and,asinExample10.1,itcosts480toproduce40unitsofoutput.HereaverageandmarginalcostsareeasilycomputedasAC¼Cq¼12,MC¼∂C∂q¼12.(10.38)Asexpected,averageandmarginalcostsareconstantandequaltoeachotherforthisconstantreturns-to-scaleproductionfunction.Changesininputprices.Ifeitherinputpriceweretochange,allofthesecostswouldchangealso.Forexample,ifwagesweretoincreaseto27(aneasynumberwithwhichtowork),costswouldbecomeCð3,27,qÞ¼2qffiffiffiffiffiffi81p¼18q,AC¼18,MC¼18.(10.39)Noticethatanincreaseinwagesof125percentraisedcostsbyonly50percenthere,bothbecauselaborrepresentsonly50percentofallcostsandbecausethechangeininputpricesencouragedthefirmtosubstitutecapitalforlabor.Thetotalcostfunction,becauseitis340Part3ProductionandSupply
derivedfromthecost-minimizationassumption,accomplishesthissubstitution“behindthescenes”—reportingonlythefinalimpactontotalcosts.Technicalprogress.Let’slooknowattheimpactthattechnicalprogresscanhaveoncosts.Specifically,assumethattheCobb-Douglasproductionfunctionisq¼AðtÞk0.5l0.5¼e.03tk0.5l0.5.(10.40)Thatis,weassumethattechnicalchangetakesanexponentialformandthattherateoftech-nicalchangeis3percentperyear.Usingtheresultsoftheprevioussection(Equation10.34)yieldsCtv,w,qðÞ¼C0ðv,w,qÞAðtÞ¼2qv0.5w0.5e.03t:(10.41)So,ifinputpricesremainthesamethentotalcostsfallattherateoftechnicalimprovement—thatis,at3percentperyear.After,say,20years,costswillbe(withv¼3,w¼12)C20ð3,12,qÞ¼2qffiffiffiffiffiffi36p⋅e.60¼12q⋅ð0.55Þ¼6.6q,AC20¼6.6,MC20¼6.6.(10.42)Consequently,costswillhavefallenbynearly50percentasaresultofthetechnicalchange.Thiswould,forexample,morethanhaveoffsetthewageriseillustratedpreviously.QUERY:Inthisexample,whataretheelasticitiesoftotalcostswithrespecttochangesininputcosts?Isthesizeoftheseelasticitiesaffectedbytechnicalchange?ContingentdemandforinputsandShephard’slemmaAswedescribedearlier,theprocessofcostminimizationcreatesanimplicitdemandforinputs.Becausethatprocessholdsquantityproducedconstant,thisdemandforinputswillalsobe“contingent”onthequantitybeingproduced.Thisrelationshipisfullyreflectedinthefirm’stotalcostfunctionand,perhapssurprisingly,contingentdemandfunctionsforallofthefirm’sinputscanbeeasilyderivedfromthatfunction.TheprocessinvolveswhathascometobecalledShephard’slemma,14whichstatesthatthecontingentdemandfunctionforanyinputisgivenbythepartialderivativeofthetotalcostfunctionwithrespecttothatinput’sprice.BecauseShephard’slemmaiswidelyusedinmanyareasofeconomicresearch,wewillprovidearelativelydetailedexaminationofit.TheintuitionbehindShephard’slemmaisstraightforward.Supposethatthepriceoflabor(w)weretoincreaseslightly.Howwouldthisaffecttotalcosts?Ifnothingelsechanged,itseemsthatcostswouldrisebyapproximatelytheamountoflaborðlÞthatthefirmwascurrentlyhiring.Roughlyspeaking,then,∂C=∂w¼l,andthatiswhatShephard’slemmaclaims.Figure10.6makesroughlythesamepointgraphically.Alongthe“pseudo”costfunctionallinputsareheldconstant,soanincreaseinthewageincreasescostsindirectproportiontotheamountoflaborused.Becausethetruecostfunctionistangenttothepseudo-functionatthecurrentwage,itsslope(thatis,itspartialderivative)alsowillshowthecurrentamountoflaborinputdemanded.Technically,Shephard’slemmaisoneresultoftheenvelopetheoremthatwasfirstdiscussedinChapter2.Thereweshowedthatthechangeintheoptimalvalueinaconstrainedoptimizationproblemwithrespecttooneoftheparametersoftheproblemcanbefoundby14NamedforR.W.Shephard,whohighlightedtheimportantrelationshipbetweencostfunctionsandinputdemandfunctionsinhisCostandProductionFunctions(Princeton,NJ:PrincetonUniversityPress,1970).Chapter10CostFunctions341
differentiatingtheLagrangianexpressionforthatoptimizationproblemwithrespecttothischangingparameter.Inthecost-minimizationcase,theLagrangianexpressionisℒ¼vkþwlþλ½_qfðk,lÞ(10.43)andtheenvelopetheoremappliedtoeitherinputis∂Cðv,w,qÞ∂v¼∂ℒðv,w,q,λÞ∂v¼kcðv,w,qÞ,∂Cðv,w,qÞ∂w¼∂ℒðv,w,q,λÞ∂w¼lcðv,w,qÞ,(10.44)wherethenotationisintendedtomakeclearthattheresultingdemandfunctionsforcapitalandlaborinputdependonv,w,andq.Becausequantityproducedentersthesefunctions,inputdemandisindeedcontingentonthatvariable.Thisfeatureofthedemandfunctionsisalsoreflectedbythe“c”inthenotation.15Hence,thedemandrelationsinEquation10.44donotrepresentacompletepictureofinputdemandbecausetheystilldependonavariablethatisunderthefirm’scontrol.Inthenextchapter,wewillcompletethestudyofinputdemandbyshowinghowtheassumptionofprofitmaximizationallowsustoeffectivelyreplaceqintheinputdemandrelationshipswiththemarketpriceofthefirm’soutput,p.EXAMPLE10.4ContingentInputDemandFunctionsInthisexample,wewillshowhowthetotalcostfunctionsderivedinExample10.2canbeusedtoderivecontingentdemandfunctionsfortheinputscapitalandlabor.1.FixedProportions:Cðv,w,qÞ¼qðv=aþw=bÞ.Forthiscostfunction,contingentde-mandfunctionsarequitesimple:kcðv,w,qÞ¼∂Cðv,w,qÞ∂v¼qa,lcðv,w,qÞ¼∂Cðv,w,qÞ∂w¼qb.(10.45)Inordertoproduceanyparticularoutputwithafixedproportionsproductionfunctionatminimalcost,thefirmmustproduceatthevertexofitsisoquantsnomatterwhattheinputs’pricesare.Hence,thedemandforinputsdependsonlyonthelevelofoutput,andvandwdonotenterthecontingentinputdemandfunctions.Inputpricesmay,however,affecttotalinputdemandsinthefixedproportionscasebecausetheymayaffecthowmuchthefirmcansell.2.Cobb-Douglas:Cðv,w,qÞ¼q1=ðαþβÞBvα=ðαþβÞwβ=ðαþβÞ.Inthiscase,thederivationismessierbutalsomoreinstructive:kcðv,w,qÞ¼∂C∂v¼ααþβ⋅q1=ðαþβÞBvβ=ðαþβÞwβ=ðαþβÞ¼ααþβ⋅q1=ðαþβÞBwvβ=ðαþβÞ,lcðv,w,qÞ¼∂C∂w¼βαþβ⋅q1=ðαþβÞBvα=ðαþβÞwα=ðαþβÞ¼βαþβ⋅q1=ðαþβÞBwvα=ðαþβÞ:(10.46)15ThenotationmirrorsthatusedforcompensateddemandcurvesinChapter5(whichwerederivedfromtheexpenditurefunction).Inthatcase,suchdemandfunctionswerecontingentontheutilitytargetassumed.342Part3ProductionandSupply
Consequently,thecontingentdemandsforinputsdependonbothinputs’prices.Ifweassumeα¼β¼0.5(soB¼2),thesereducetokcv,w,qðÞ¼0.5⋅q⋅2⋅wv0.5¼qwv0.5,lcv,w,qðÞ¼0.5⋅q⋅2⋅wv0.5¼qwv0.5.(10.47)Withv¼3,w¼12,andq¼40,Equations10.47yieldtheresultweobtainedpreviously:thatthefirmshouldchoosetheinputcombinationk¼80,l¼20tominimizethecostofproducing40unitsofoutput.Ifthewageweretoriseto,say,27,thefirmwouldchoosetheinputcombinationk¼120,l¼40=3toproduce40unitsofoutput.Totalcostswouldrisefrom480to520,buttheabilityofthefirmtosubstitutecapitalforthenowmoreexpensivelabordoessaveconsiderably.Forexample,theinitialinputcombinationwouldnowcost780.3.CES:Cðv,w,qÞ¼q1=γðv1σþw1σÞ1=ð1σÞ.TheimportanceofinputsubstitutionisshownevenmoreclearlywiththecontingentdemandfunctionsderivedfromtheCESfunction.Forthatfunction,kcðv,w,qÞ¼∂C∂v¼11σ⋅q1=γðv1σþw1σÞσ=ð1σÞð1σÞvσ¼q1=γðv1σþw1σÞσ=ð1σÞvσ,lcðv,w,qÞ¼∂C∂w¼11σ⋅q1=γðv1σþw1σÞσ=ð1σÞð1σÞwσ¼q1=γðv1σþw1σÞσ=ð1σÞwσ.(10.48)Thesefunctionscollapsewhenσ¼1(theCobb-Douglascase),butwecanstudyexampleswitheithermoreðσ¼2Þorlessðσ¼0.5ÞsubstitutabilityanduseCobb-Douglasasthemiddleground.Ifweassumeconstantreturnstoscaleðγ¼1Þandv¼3,w¼12,andq¼40,thencontingentdemandsfortheinputswhenσ¼2arekcð3,12,40Þ¼40ð31þ121Þ2⋅32¼25:6,lcð3,12,40Þ¼40ð31þ121Þ2⋅122¼1:6:(10.49)Thatis,thelevelofcapitalinputis16timestheamountoflaborinput.Withlesssub-stitutabilityðσ¼0.5Þ,contingentinputdemandsarekcð3,12,40Þ¼40ð30:5þ120:5Þ1⋅30:5¼120,lcð3,12,40Þ¼40ð30:5þ120:5Þ1⋅120:5¼60.(10.50)So,inthiscase,capitalinputisonlytwiceaslargeaslaborinput.Althoughthesevariouscasescannotbecompareddirectlybecausedifferentvaluesforσscaleoutputdifferently,wecan,asanexample,lookattheconsequenceofariseinwto27inthelow-substitutabilitycase.Withw¼27,thefirmwillchoosek¼160,l¼53.3.Inthiscase,thecostsavingsfromsubstitutioncanbecalculatedbycomparingtotalcostswhenusingtheinitialinputcombination(¼ð3Þ120þ27ð60Þ¼1980)tototalcostswiththeoptimalcombination(¼ð3Þ160þ27ð53:3Þ¼1919).Hence,movingtotheoptimalinputcombinationreducestotalcostsbyonlyabout3percent.IntheCobb-Douglascase,costsavingsareover20percent.QUERY:Howwouldtotalcostschangeifwincreasedfrom12to27andtheproductionfunctiontookthesimplelinearformq¼kþ4l?Whatlightdoesthisresultshedontheothercasesinthisexample?Chapter10CostFunctions343
SHEPHARD’SLEMMAANDTHEELASTICITYOFSUBSTITUTIONOneespeciallynicefeatureofShephard’slemmaisthatitcanbeusedtoshowhowtoderiveinformationaboutinputsubstitutiondirectlyfromthetotalcostfunctionthroughdifferenti-ation.UsingthedefinitioninEquation10.31yieldssi,j¼∂lnðxi=xjÞ∂lnðwj=wiÞ¼∂lnðCi=CjÞ∂lnðwj=wiÞ,(10.51)whereCiandCjarethepartialderivativesofthetotalcostfunctionwithrespecttotheinputprices.Oncethetotalcostfunctionisknown(perhapsthrougheconometricestimation),informationaboutsubstitutabilityamonginputscanthusbereadilyobtainedfromit.IntheExtensionstothischapter,wedescribesomeoftheresultsthathavebeenobtainedinthisway.Problems10.11and10.12providesomeadditionaldetailsaboutwaysinwhichsub-stitutabilityamonginputscanbemeasured.SHORT-RUN,LONG-RUNDISTINCTIONItistraditionalineconomicstomakeadistinctionbetweenthe“shortrun”andthe“longrun.”Althoughnoveryprecisetemporaldefinitioncanbeprovidedfortheseterms,thegeneralpurposeofthedistinctionistodifferentiatebetweenashortperiodduringwhicheconomicactorshaveonlylimitedflexibilityintheiractionsandalongerperiodthatprovidesgreaterfreedom.Oneareaofstudyinwhichthisdistinctionisquiteimportantisinthetheoryofthefirmanditscosts,becauseeconomistsareinterestedinexaminingsupplyreactionsoverdifferingtimeintervals.Intheremainderofthischapter,wewillexaminetheimplicationsofsuchdifferentialresponse.Toillustratewhyshort-runandlong-runreactionsmightdiffer,assumethatcapitalinputisheldfixedatalevelofk1andthat(intheshortrun)thefirmisfreetovaryonlyitslaborinput.16Implicitly,weareassumingthatalterationsinthelevelofcapitalinputareinfinitelycostlyintheshortrun.Asaresultofthisassumption,theshort-runproductionfunctionisq¼fðk1,lÞ,(10.52)wherethisnotationexplicitlyshowsthatcapitalinputsmaynotvary.Ofcourse,thelevelofoutputstillmaybechangedifthefirmaltersitsuseoflabor.Short-runtotalcostsTotalcostforthefirmcontinuestobedefinedasC¼vkþwl(10.53)forourshort-runanalysis,butnowcapitalinputisfixedatk1.Todenotethisfact,wewillwriteSC¼vk1þwl,(10.54)wheretheSindicatesthatweareanalyzingshort-runcostswiththelevelofcapitalinputfixed.Throughoutouranalysis,wewillusethismethodtoindicateshort-runcosts,whereaslong-runcostswillbedenotedbyC,AC,andMC.Usuallywewillnotdenotethelevelofcapitalinputexplicitly,butitisunderstoodthatthisinputisfixed.16Ofcourse,thisapproachisforillustrativepurposesonly.Inmanyactualsituations,laborinputmaybelessflexibleintheshortrunthaniscapitalinput.344Part3ProductionandSupply
FixedandvariablecostsThetwotypesofinputcostsinEquation8.53aregivenspecialnames.Thetermvk1isreferredtoas(short-run)fixedcosts;becausek1isconstant,thesecostswillnotchangeintheshortrun.Thetermwlisreferredtoas(short-run)variablecosts—laborinputcanindeedbevariedintheshortrun.Hencewehavethefollowingdefinitions.DEFINITIONShort-runfixedandvariablecosts.Short-runfixedcostsarecostsassociatedwithinputsthatcannotbevariedintheshortrun.Short-runvariablecostsarecostsofthoseinputsthatcanbevariedsoastochangethefirm’soutputlevel.Theimportanceofthisdistinctionistodifferentiatebetweenvariablecoststhatthefirmcanavoidbyproducingnothingintheshortrunandcoststhatarefixedandmustbepaidregardlessoftheoutputlevelchosen(evenzero).Nonoptimalityofshort-runcostsItisimportanttounderstandthattotalshort-runcostsarenottheminimalcostsforproducingthevariousoutputlevels.Becauseweareholdingcapitalfixedintheshortrun,thefirmdoesnothavetheflexibilityofinputchoicethatweassumedwhenwediscussedcostminimizationearlierinthischapter.Rather,tovaryitsoutputlevelintheshortrun,thefirmwillbeforcedtouse“nonoptimal”inputcombinations:TheRTSwillnotbeequaltotheratiooftheinputprices.ThisisshowninFigure10.7.Intheshortrun,thefirmisconstrainedtousek1unitsofcapital.Toproduceoutputlevelq0,itthereforewillusel0unitsoflabor.Similarly,itwillusel1unitsoflabortoproduceq1andl2unitstoproduceq2.ThetotalcostsoftheseinputcombinationsaregivenbySC0,SC1,andSC2,respectively.Onlyfortheinputcombinationk1,l1isoutputbeingproducedatminimalcost.OnlyatthatpointistheRTSequaltotheratiooftheinputprices.FromFigure10.7,itisclearthatq0isbeingproducedwith“toomuch”capitalinthisshort-runsituation.Costminimizationshouldsuggestasoutheasterlymovementalongtheq0isoquant,indicatingasubstitutionoflaborforcapitalinproduction.Similarly,q2isbeingproducedwith“toolittle”capital,andcostscouldbereducedbysubstitutingcapitalforlabor.Neitherofthesesubstitutionsispossibleintheshortrun.Overalongerperiod,however,thefirmwillbeabletochangeitslevelofcapitalinputandwilladjustitsinputusagetothecost-minimizingcombina-tions.Wehavealreadydiscussedthisflexiblecaseearlierinthischapterandshallreturntoittoillustratetheconnectionbetweenlong-runandshort-runcostcurves.Short-runmarginalandaveragecostsFrequently,itismoreusefultoanalyzeshort-runcostsonaper-unit-of-outputbasisratherthanonatotalbasis.Thetwomostimportantper-unitconceptsthatcanbederivedfromtheshort-runtotalcostfunctionaretheshort-runaveragetotalcostfunction(SAC)andtheshort-runmarginalcostfunction(SMC).TheseconceptsaredefinedasSAC¼totalcoststotaloutput¼SCq,SMC¼changeintotalcostschangeinoutput¼∂SC∂q,(10.55)whereagainthesearedefinedforaspecifiedlevelofcapitalinput.Thesedefinitionsforaverageandmarginalcostsareidenticaltothosedevelopedpreviouslyforthelong-run,fullyflexiblecase,andthederivationofcostcurvesfromthetotalcostfunctionproceedsinexactlythesameway.Becausetheshort-runtotalcostcurvehasthesamegeneraltypeofcubicshapeasdidthetotalcostcurveinFigure10.5,theseshort-runaverageandmarginalcostcurveswillalsobeU-shaped.Chapter10CostFunctions345
Relationshipbetweenshort-runandlong-runcostcurvesItiseasytodemonstratetherelationshipbetweentheshort-runcostsandthefullyflexiblelong-runcoststhatwerederivedpreviouslyinthischapter.Figure10.8showsthisrelation-shipforboththeconstantreturns-to-scaleandcubictotalcostcurvecases.Short-runtotalcostsforthreelevelsofcapitalinputareshown,althoughofcourseitwouldbepossibletoshowmanymoresuchshort-runcurves.Thefiguresshowthatlong-runtotalcostsðCÞarealwayslessthanshort-runtotalcosts,exceptatthatoutputlevelforwhichtheassumedfixedcapitalinputisappropriatetolong-runcostminimization.Forexample,asinFigure10.7,withcapitalinputofk1thefirmcanobtainfullcostminimizationwhenq1isproduced.Hence,short-runandlong-runtotalcostsareequalatthispoint.Foroutputlevelsotherthanq1,however,SC>C,aswasthecaseinFigure10.7.Technically,thelong-runtotalcostcurvesinFigure10.8aresaidtobean“envelope”oftheirrespectiveshort-runcurves.Theseshort-runtotalcostcurvescanberepresentedpara-metricallybyshort-runtotalcost¼SCðv,w,q,kÞ,(10.56)andthefamilyofshort-runtotalcostcurvesisgeneratedbyallowingktovarywhileholdingvandwconstant.Thelong-runtotalcostcurveCmustobeytheshort-runrelationshipinEquation10.56andthefurtherconditionthatkbecostminimizingforanylevelofoutput.Afirst-orderconditionforthisminimizationisthatFIGURE10.7“Nonoptimal”InputChoicesMustBeMadeintheShortRunBecausecapitalinputisfixedatk,intheshortrunthefirmcannotbringitsRTSintoequalitywiththeratioofinputprices.Giventheinputprices,q0shouldbeproducedwithmorelaborandlesscapitalthanitwillbeintheshortrun,whereasq2shouldbeproducedwithmorecapitalandlesslaborthanitwillbe.SC0l2l1k1l0q2q1q0SC1= CSC2k perperiodl per period346Part3ProductionandSupply
∂SCðv,w,q,kÞ∂k¼0.(10.57)SolvingEquations10.56and10.57simultaneouslythengeneratesthelong-runtotalcostfunction.Althoughthisisadifferentapproachtoderivingthetotalcostfunction,itshouldgivepreciselythesameresultsderivedearlierinthischapter—asthenextexampleillustrates.FIGURE10.8TwoPossibleShapesforLong-RunTotalCostCurvesByconsideringallpossiblelevelsofcapitalinput,thelong-runtotalcostcurve(C)canbetraced.In(a),theunderlyingproductionfunctionexhibitsconstantreturnstoscale:inthelongrun,thoughnotintheshortrun,totalcostsareproportionaltooutput.In(b),thelong-runtotalcostcurvehasacubicshape,asdotheshort-runcurves.Diminishingreturnssetinmoresharplyfortheshort-runcurves,however,becauseoftheassumedfixedlevelofcapitalinput.TotalcostsTotalcosts(a) Constant returns to scale(b) Cubic total cost curve caseOutput per periodOutputper periodSC (k0)SC (k0)q0q1q2q0q1q2CCSC (k1)SC (k1)SC (k2)SC (k2)
EXAMPLE10.5EnvelopeRelationsandCobb-DouglasCostFunctionsAgainwestartwiththeCobb-Douglasproductionfunctionq¼kαlβ,butnowweholdcapitalinputconstantatk1.So,intheshortrun,q¼kα1lβorl¼q1=βkα=β1,(10.58)andtotalcostsaregivenbySCðv,w,q,k1Þ¼vk1þwl¼vk1þwq1=βkα=β1.(10.59)Noticethatthefixedlevelofcapitalentersintothisshort-runtotalcostfunctionintwoways:(1)k1determinesfixedcosts;and(2)k1alsoinpartdeterminesvariablecostsbecauseitdetermineshowmuchofthevariableinput(labor)isrequiredtoproducevariouslevelsofoutput.Toderivelong-runcosts,werequirethatkbechosentominimizetotalcosts:∂SCðv,w,q,kÞ∂k¼vþαβ⋅wq1=βkðαþβÞ=β¼0.(10.60)Althoughthealgebraismessy,thisequationcanbesolvedforkandsubstitutedintoEquation10.59toreturnustotheCobb-Douglascostfunction:Cðv,w,qÞ¼Bq1=ðαþβÞvα=ðαþβÞwβ=ðαþβÞ.(10.61)Numericalexample.Ifweagainletα¼β¼0.5,v¼3,andw¼12,thentheshort-runcostfunctionisSCð3,12,q,kÞ¼3k1þ12q2k11.(10.62)InExample10.1wefoundthatthecost-minimizinglevelofcapitalinputforq¼40wask¼80.Equation10.62showsthatshort-runtotalcostsforproducing40unitsofoutputwithk¼80isSCð3,12,q,80Þ¼3.80þ12⋅q2⋅180¼240þ3q220¼240þ240¼480,(10.63)whichisjustwhatwefoundbefore.WecanalsouseEquation10.62toshowhowcostsdifferintheshortandlongrun.Table10.1showsthat,foroutputlevelsotherthanq¼40,short-runcostsarelargerthanlong-runcostsandthatthisdifferenceisproportionallylargerthefartheronegetsfromtheoutputlevelforwhichk¼80isoptimal.TABLE10.1DifferencebetweenShort-RunandLong-RunTotalCost,k¼80qC¼12qSC¼240þ3q2=2010120255202403003036037540480480506006156072078070840975809601200348Part3ProductionandSupply
Itisalsoinstructivetostudydifferencesbetweenthelong-runandshort-runper-unitcostsinthissituation.HereAC¼MC¼12.Wecancomputetheshort-runequivalents(whenk¼80)asSAC¼SCq¼240qþ3q20,SMC¼∂SC∂q¼6q20.(10.64)Bothoftheseshort-rununitcostsareequalto12whenq¼40.However,asTable10.2shows,short-rununitcostscandiffersignificantlyfromthisfigure,dependingontheoutputlevelthatthefirmproduces.Noticeinparticularthatshort-runmarginalcostincreasesrapidlyasoutputexpandsbeyondq¼40becauseofdiminishingreturnstothevariableinput(labor).Thisconclusionplaysanimportantroleinthetheoryofshort-runpricedetermination.QUERY:Explainwhyanincreaseinwwillincreasebothshort-runaveragecostandshort-runmarginalcostinthisillustration,butanincreaseinvaffectsonlyshort-runaveragecost.Graphsofper-unitcostcurvesTheenvelopetotalcostcurverelationshipsexhibitedinFigure10.8canbeusedtoshowgeometricconnectionsbetweenshort-runandlong-runaverageandmarginalcostcurves.ThesearepresentedinFigure10.9forthecubictotalcostcurvecase.Inthefigure,short-runandlong-runaveragecostsareequalatthatoutputforwhichthe(fixed)capitalinputisappropriate.Atq1,forexample,SACðk1Þ¼ACbecausek1isusedinproducingq1atminimalcosts.Formovementsawayfromq1,short-runaveragecostsexceedlong-runav-eragecosts,thusreflectingthecost-minimizingnatureofthelong-runtotalcostcurve.Becausetheminimumpointofthelong-runaveragecostcurve(AC)playsamajorroleinthetheoryoflong-runpricedetermination,itisimportanttonotethevariouscurvesthatpassthroughthispointinFigure10.9.First,asisalwaystrueforaverageandmarginalcostcurves,theMCcurvepassesthroughthelowpointoftheACcurve.Atq1,long-runaverageandmarginalcostsareequal.Associatedwithq1isacertainlevelofcapitalinput(say,k1);theshort-runaveragecostcurveforthislevelofcapitalinputistangenttotheACcurveatitsminimumpoint.TheSACcurvealsoreachesitsminimumatoutputlevelq1.Formovementsawayfromq1,theACcurveismuchflatterthantheSACcurve,andthisreflectsthegreaterflexibilityopentofirmsinthelongrun.Short-runcostsriserapidlybecausecapitalinputsarefixed.Inthelongrun,suchinputsarenotfixed,anddiminishingmarginalproductivitiesdoTABLE10.2UnitCostsintheLongRunandtheShortRun,k¼80qACMCSACSMC10121225.5320121215.0630121212.5940121212.01250121212.31560121213.01870121213.92180121215.024Chapter10CostFunctions349
notoccursoabruptly.Finally,becausetheSACcurvereachesitsminimumatq1,theshort-runmarginalcostcurve(SMC)alsopassesthroughthispoint.TheminimumpointoftheACcurvethereforebringstogetherthefourmostimportantper-unitcosts:atthispoint,AC¼MC¼SAC¼SMC.(10.65)Forthisreason,asweshallshowinChapter12,theoutputlevelq1isanimportantequi-libriumpointforacompetitivefirminthelongrun.SUMMARYInthischapterweexaminedtherelationshipbetweenthelevelofoutputafirmproducesandtheinputcostsassociatedwiththatlevelofproduction.Theresultingcostcurvesshouldgenerallybefamiliartoyoubecausetheyarewidelyusedinmostcoursesinintroductoryeconomics.Herewehaveshownhowsuchcurvesreflectthefirm’sunderlyingproductionfunctionandthefirm’sdesiretominimizecosts.Bydevelopingcostcurvesfromthesebasicfoundations,wewereabletoillustrateanumberofimportantfindings.•Afirmthatwishestominimizetheeconomiccostsofpro-ducingaparticularlevelofoutputshouldchoosethatinputcombinationforwhichtherateoftechnicalsubsti-tution(RTS)isequaltotheratiooftheinputs’rentalprices.•Repeatedapplicationofthisminimizationprocedureyieldsthefirm’sexpansionpath.Becausetheexpansionpathshowshowinputusageexpandswiththelevelofoutput,italsoshowstherelationshipbetweenoutputlevelandtotalcost.Thatrelationshipissummarizedbythetotalcostfunction,Cðq,v,wÞ,whichshowsproduc-tioncostsasafunctionofoutputlevelsandinputprices.•Thefirm’saveragecostðAC¼C=qÞandmarginalcostðMC¼∂C=∂qÞfunctionscanbederiveddirectlyfromthetotalcostfunction.IfthetotalcostcurvehasageneralcubicshapethentheACandMCcurveswillbeU-shaped.•Allcostcurvesaredrawnontheassumptionthattheinputpricesareheldconstant.Wheninputpriceschange,FIGURE10.9AverageandMarginalCostCurvesfortheCubicCostCurveCaseThissetofcurvesisderivedfromthetotalcostcurvesshowninFigure10.8.TheACandMCcurveshavetheusualU-shapes,asdotheshort-runcurves.Atq1,long-runaveragecostsareminimized.Theconfigurationofcurvesatthisminimumpointisquiteimportant.CostsOutput perperiodq0q1q2SMC (k0)SMC (k1)SMC (k2)MCSAC (k0)SAC (k1)ACSAC (k2)350Part3ProductionandSupply
PROBLEMS10.1Inafamousarticle[J.Viner,“CostCurvesandSupplyCurves,”ZeitschriftfurNationalokonomie3(September1931):23–46],VinercriticizedhisdraftsmanwhocouldnotdrawafamilyofSACcurveswhosepointsoftangencywiththeU-shapedACcurvewerealsotheminimumpointsoneachSACcurve.Thedraftsmanprotestedthatsuchadrawingwasimpossibletoconstruct.Whomwouldyousupportinthisdebate?10.2Supposethatafirmproducestwodifferentoutputs,thequantitiesofwhicharerepresentedbyq1andq2.Ingeneral,thefirm’stotalcostscanberepresentedbyCðq1,q2Þ.ThisfunctionexhibitseconomiesofscopeifCðq1,0ÞþCð0,q2Þ>Cðq1,q2Þforalloutputlevelsofeithergood.a.Explaininwordswhythismathematicalformulationimpliesthatcostswillbelowerinthismultiproductfirmthanintwosingle-productfirmsproducingeachgoodseparately.b.Ifthetwooutputsareactuallythesamegood,wecandefinetotaloutputasq¼q1þq2.Supposethatinthiscaseaveragecostð¼C=qÞfallsasqincreases.Showthatthisfirmalsoenjoyseconomiesofscopeunderthedefinitionprovidedhere.10.3ProfessorSmithandProfessorJonesaregoingtoproduceanewintroductorytextbook.Astruescientists,theyhavelaidouttheproductionfunctionforthebookasq¼S1=2J1=2,whereq¼thenumberofpagesinthefinishedbook,S¼thenumberofworkinghoursspentbySmith,andJ¼thenumberofhoursspentworkingbyJones.Smithvalueshislaboras$3perworkinghour.Hehasspent900hourspreparingthefirstdraft.Jones,whoselaborisvaluedat$12perworkinghour,willreviseSmith’sdrafttocompletethebook.a.HowmanyhourswillJoneshavetospendtoproduceafinishedbookof150pages?Of300pages?Of450pages?b.Whatisthemarginalcostofthe150thpageofthefinishedbook?Ofthe300thpage?Ofthe450thpage?10.4Supposethatafirm’sfixedproportionproductionfunctionisgivenbyq¼minð5k,10lÞ.a.Calculatethefirm’slong-runtotal,average,andmarginalcostfunctions.b.Supposethatkisfixedat10intheshortrun.Calculatethefirm’sshort-runtotal,average,andmarginalcostfunctions.costcurveswillshifttonewpositions.Theextentoftheshiftswillbedeterminedbytheoverallimportanceoftheinputwhosepricehaschangedandbytheeasewithwhichthefirmmaysubstituteoneinputforanother.Technicalprogresswillalsoshiftcostcurves.•Inputdemandfunctionscanbederivedfromthefirm’stotalcostfunctionthroughpartialdifferentiation.Theseinputdemandfunctionswilldependonthequantityofoutputthatthefirmchoosestoproduceandarethere-forecalled“contingent”demandfunctions.•Intheshortrun,thefirmmaynotbeabletovarysomeinputs.Itcanthenalteritslevelofproductiononlybychangingitsemploymentofvariableinputs.Insodoing,itmayhavetousenonoptimal,higher-costinputcom-binationsthanitwouldchooseifitwerepossibletovaryallinputs.Chapter10CostFunctions351
c.Supposev¼1andw¼3.Calculatethisfirm’slong-runandshort-runaverageandmarginalcostcurves.10.5Afirmproducinghockeystickshasaproductionfunctiongivenbyq¼2ffiffiffiffiffiffiffiffik⋅lp.Intheshortrun,thefirm’samountofcapitalequipmentisfixedatk¼100.Therentalrateforkisv¼$1,andthewagerateforlisw¼$4.a.Calculatethefirm’sshort-runtotalcostcurve.Calculatetheshort-runaveragecostcurve.b.Whatisthefirm’sshort-runmarginalcostfunction?WhataretheSC,SAC,andSMCforthefirmifitproduces25hockeysticks?Fiftyhockeysticks?Onehundredhockeysticks?Twohundredhockeysticks?c.GraphtheSACandtheSMCcurvesforthefirm.Indicatethepointsfoundinpart(b).d.WheredoestheSMCcurveintersecttheSACcurve?ExplainwhytheSMCcurvewillalwaysintersecttheSACcurveatitslowestpoint.Supposenowthatcapitalusedforproducinghockeysticksisfixedat_kintheshortrun.e.Calculatethefirm’stotalcostsasafunctionofq,w,v,and_k.f.Givenq,w,andv,howshouldthecapitalstockbechosentominimizetotalcost?g.Useyourresultsfrompart(f)tocalculatethelong-runtotalcostofhockeystickproduction.h.Forw¼$4,v¼$1,graphthelong-runtotalcostcurveforhockeystickproduction.Showthatthisisanenvelopefortheshort-runcurvescomputedinpart(a)byexaminingvaluesof_kof100,200,and400.10.6Anenterprisingentrepreneurpurchasestwofirmstoproducewidgets.Eachfirmproducesidenticalproducts,andeachhasaproductionfunctiongivenbyq¼ffiffiffiffiffiffiffiffikilip,i¼1,2.Thefirmsdiffer,however,intheamountofcapitalequipmenteachhas.Inparticular,firm1hask1¼25whereasfirm2hask2¼100.Rentalratesforkandlaregivenbyw¼v¼$1.a.Iftheentrepreneurwishestominimizeshort-runtotalcostsofwidgetproduction,howshouldoutputbeallocatedbetweenthetwofirms?b.Giventhatoutputisoptimallyallocatedbetweenthetwofirms,calculatetheshort-runtotal,average,andmarginalcostcurves.Whatisthemarginalcostofthe100thwidget?The125thwidget?The200thwidget?c.Howshouldtheentrepreneurallocatewidgetproductionbetweenthetwofirmsinthelongrun?Calculatethelong-runtotal,average,andmarginalcostcurvesforwidgetproduction.d.Howwouldyouranswertopart(c)changeifbothfirmsexhibiteddiminishingreturnstoscale?10.7Supposethetotal-costfunctionforafirmisgivenbyC¼qw2=3v1=3.a.UseShephard’slemmatocomputetheconstantoutputdemandfunctionsforinputslandk.b.Useyourresultsfrompart(a)tocalculatetheunderlyingproductionfunctionforq.352Part3ProductionandSupply
10.8Supposethetotal-costfunctionforafirmisgivenbyC¼qðvþ2ffiffiffiffiffiffivwpþwÞ.a.UseShephard’slemmatocomputetheconstantoutputdemandfunctionforeachinput,kandl.b.Usetheresultsfrompart(a)tocomputetheunderlyingproductionfunctionforq.c.YoucanchecktheresultbyusingresultsfromExample10.2toshowthattheCEScostfunctionwithσ¼0:5,ρ¼1generatesthistotal-costfunction.AnalyticalProblems10.9GeneralizingtheCEScostfunctionTheCESproductionfunctioncanbegeneralizedtopermitweightingoftheinputs.Inthetwo-inputcase,thisfunctionisq¼fðk,lÞ¼½ðakÞρþðblÞργ=ρ.a.Whatisthetotal-costfunctionforafirmwiththisproductionfunction?Hint:Youcan,ofcourse,workthisoutfromscratch;easierperhapsistousetheresultsfromExample10.2andreasonthatthepriceforaunitofcapitalinputinthisproductionfunctionisv=aandforaunitoflaborinputisw=b.b.Ifγ¼1andaþb¼1,itcanbeshownthatthisproductionfunctionconvergestotheCobb-Douglasformq¼kalbasρ!0.WhatisthetotalcostfunctionforthisparticularversionoftheCESfunction?c.Therelativelaborcostshareforatwo-inputproductionfunctionisgivenbywl=vk.ShowthatthisshareisconstantfortheCobb-Douglasfunctioninpart(b).Howistherelativelaborshareaffectedbytheparametersaandb?d.CalculatetherelativelaborcostshareforthegeneralCESfunctionintroducedabove.Howisthatshareaffectedbychangesinw=v?Howisthedirectionofthiseffectdeterminedbytheelasticityofsubstitution,σ?Howisitaffectedbythesizesoftheparametersaandb?10.10InputdemandelasticitiesTheown-priceelasticitiesofcontingentinputdemandforlaborandcapitalaredefinedaselc,w¼∂lc∂w⋅wlc,ekc,v¼∂kc∂v⋅vkc.a.Calculateelc,wandekc,vforeachofthecostfunctionsshowninExample10.2.b.Showthat,ingeneral,elc,wþelc,v¼0.c.Showthatthecross-pricederivativesofcontingentdemandfunctionsareequal—thatis,showthat∂lc=∂v¼∂kc=∂w.Usethisfacttoshowthatslelc,v¼skekc,wwheresl,skare,respectively,theshareoflaborintotalcostðwl=CÞandofcapitalintotalcostðvk=CÞ.d.Usetheresultsfromparts(b)and(c)toshowthatslelc,wþskekc,w¼0.e.Interpretthesevariouselasticityrelationshipsinwordsanddiscusstheiroverallrelevancetoageneraltheoryofinputdemand.10.11TheelasticityofsubstitutionandinputdemandelasticitiesThedefinitionofthe(Morishima)elasticityofsubstitution(Equation10.51)canalsobedescribedintermsofinputdemandelasticities.Thisillustratesthebasicasymmetryinthedefinition.Chapter10CostFunctions353
a.Showthatifonlywjchanges,si,j¼exci,wjexcj,wj.b.Showthatifonlywichanges,sj,i¼excj,wiexci,wi.c.ShowthatiftheproductionfunctiontakesthegeneralCESformq¼½Pnxρi1=ρforρ6¼0,thenalloftheMorishimaelasticitiesarethesame:si,j¼1=ð1ρÞ¼σ.ThisistheonlycaseinwhichtheMorishimadefinitionissymmetric.10.12TheAllenelasticityofsubstitutionManyempiricalstudiesofcostsreportanalternativedefinitionoftheelasticityofsubstitutionbetweeninputs.ThisalternativedefinitionwasfirstproposedbyR.G.D.Alleninthe1930sandfurtherclarifiedbyH.Uzawainthe1960s.Thisdefinitionbuildsdirectlyontheproductionfunction–basedelasticityofsubstitutiondefinedinfootnote6ofChapter9:Ai,j¼CijC=CiCj,wherethesubscriptsindicatepartialdifferentiationwithrespecttovariousinputprices.Clearly,theAllendefinitionissymmetric.a.ShowthatAi,j¼exci,wj=sj,wheresjistheshareofinputjintotalcost.b.ShowthattheelasticityofsiwithrespecttothepriceofinputjisrelatedtotheAllenelasticitybyesi,pj¼sjðAi,j1Þ.c.Showthat,withonlytwoinputs,Ak,l¼1fortheCobb-DouglascaseandAk,l¼σfortheCEScase.d.ReadBlackorbyandRussell(1989:“WilltheRealElasticityofSubstitutionPleaseStandUp?”)toseewhytheMorishimadefinitionispreferredformostpurposes.SUGGESTIONSFORFURTHERREADINGAllen,R.G.D.MathematicalAnalysisforEconomists.NewYork:St.Martin’sPress,1938,variouspages—seeindex.Complete(thoughdated)mathematicalanalysisofsubstitutionpos-sibilitiesandcostfunctions.Notationsomewhatdifficult.Blackorby,C.,andR.R.Russell.“WilltheRealElasticityofSubstitutionPleaseStandUp?(AComparisonoftheAllen/UzawaandMorishimaElasticities).”AmericanEconomicReview(September1989):882–88.Aniceclarificationoftheproperwaytomeasuresubstitutabilityamongmanyinputsinproduction.ArguesthattheAllen/UzawadefinitionislargelyuselessandthattheMorishimadefinitionisbyfarthebest.Ferguson,C.E.TheNeoclassicalTheoryofProductionandDistribution.Cambridge:CambridgeUniversityPress,1969,Chap.6.Nicedevelopmentofcostcurves;especiallystrongongraphicanalysis.Fuss,M.,andD.McFadden.ProductionEconomics:ADualApproachtoTheoryandApplications.Amsterdam:North-Holland,1978.Difficultandquitecompletetreatmentofthedualrelationshipbe-tweenproductionandcostfunctions.Somediscussionofempiricalissues.Knight,H.H.“CostofProductionandPriceoverLongandShortPeriods.”JournalofPoliticalEconomics29(April1921):304–35.Classictreatmentoftheshort-run,long-rundistinction.Silberberg,E.,andW.Suen.TheStructureofEconomics:AMathematicalAnalysis,3rded.Boston:Irwin/McGraw-Hill,2001.Chapters7–9haveagreatdealofmaterialoncostfunctions.Espe-ciallyrecommendedaretheauthors’discussionsof“reciprocityeffects”andtheirtreatmentoftheshort-run–long-rundistinctionasanapplicationoftheLeChatelierprinciplefromphysics.Sydsaeter,K.,A.Strom,andP.Berck.Economists’Mathe-maticalManual,3rded.Berlin:Springer-Verlag,2000.Chapter25providesasuccinctsummaryofthemathematicalcon-ceptsinthischapter.Anicesummaryofmanyinputcostfunctions,butbewareoftypos.354Part3ProductionandSupply
EXTENSIONSTheTranslogCostFunctionThetwocostfunctionsstudiedinChapter10(theCobb-DouglasandtheCES)areveryrestrictiveinthesubstitutionpossibilitiestheypermit.TheCobb-Douglasimplicitlyassumesthatσ¼1betweenanytwoinputs.TheCESpermitsσtotakeanyvalue,butitrequiresthattheelasticityofsubstitutionbethesamebetweenanytwoinputs.Becauseempiricaleconomistswouldprefertoletthedatashowwhattheactualsubstitutionpossibilitiesamonginputsare,theyhavetriedtofindmoreflexiblefunctionalforms.Oneespe-ciallypopularsuchformisthetranslogcostfunction,firstmadepopularbyFussandMcFadden(1978).Inthisextensionwewilllookatthisfunction.E10.1ThetranslogwithtwoinputsInExample10.2,wecalculatedtheCobb-Douglascostfunctioninthetwo-inputcaseasCðq,v,wÞ¼Bq1=ðαþβÞvα=ðαþβÞwβ=ðαþβÞ.Ifwetakethenaturalloga-rithmofthiswehavelnCðq,v,wÞ¼lnBþ½1=ðαþβÞlnqþ½α=ðαþβÞlnvþ½β=ðαþβÞlnw.(i)Thatis,thelogoftotalcostsislinearinthelogsofoutputandtheinputprices.Thetranslogfunctiongeneralizesthisbypermittingsecond-ordertermsininputprices:lnCðq,v,wÞ¼lnqþβ0þβ1lnvþβ2lnwþβ3ðlnvÞ2þβ4ðlnwÞ2þβ5lnvlnw,(ii)wherethisfunctionimplicitlyassumesconstantreturnstoscale(becausethecoefficientoflnqis1.0)—althoughthatneednotbethecase.Someofthepropertiesofthisfunctionare:•Forthefunctiontobehomogeneousofdegree1ininputprices,itmustbethecasethatβ1þβ2¼1andβ3þβ4þβ5¼0.•ThisfunctionincludestheCobb-Douglasasthespecialcaseβ3¼β4¼β5¼0.Hence,thefunc-tioncanbeusedtoteststatisticallywhethertheCobb-Douglasisappropriate.•Inputsharesforthetranslogfunctionareespe-ciallyeasytocomputeusingtheresultthatsi¼ð∂lnCÞ=ð∂lnwiÞ.Inthetwo-inputcase,thisyieldssk¼∂lnC∂lnv¼β1þ2β3lnvþβ5lnw,sl¼∂lnC∂lnw¼β2þ2β4lnwþβ5lnv.(iii)IntheCobb-Douglascaseðβ3¼β4¼β5¼0Þthesesharesareconstant,butwiththegeneraltranslogfunctiontheyarenot.•CalculatingtheelasticityofsubstitutioninthetranslogcaseproceedsbyusingtheresultgiveninProblem10.11thatsk,l¼ekc,welc,w.Mak-ingthiscalculationisstraightforward(providedonekeepstrackofhowtouselogarithms):ekc,w¼∂lnCv∂lnw¼∂lnCv⋅∂lnC∂lnv∂lnw¼∂lnClnvþln∂lnC∂lnv∂lnw¼sl0þ∂lnsk∂sk⋅∂2lnC∂v∂w¼slþβ5sk.(iv)Observethat,intheCobb-Douglascaseðβ5¼0Þ,thecontingentpriceelasticityofde-mandforkwithrespecttothewagehasasimpleform:ekc,w¼sl.Asimilarsetofmanipulationsyieldselc,w¼skþ2β4=sland,intheCobb-Douglascase,elc,w¼sk.Bringingthesetwoelasticitiestogetheryieldssk,l¼ekc,welc,w¼slþskþβ5sk2β4sl¼1þslβ52skβ4sksl.(v)Again,intheCobb-Douglascasewehavesk,l¼1,asshouldhavebeenexpected.•TheAllenelasticityofsubstitution(seeProblem10.12)forthetranslogfunctionisAk,l¼1þβ5=sksl.Thisfunctioncanalsobeusedtocalculatethatthe(contingent)cross-priceelas-ticityofdemandisekc,w¼slAk,l¼slþβ5=sk,aswasshownpreviously.Hereagain,Ak,l¼1intheCobb-Douglascase.Ingeneral,however,theAllenandMorishimadefinitionswilldifferevenwithjusttwoinputs.Chapter10CostFunctions355
E10.2Themany-inputtranslogcostfunctionMostempiricalstudiesincludemorethantwoinputs.Thetranslogcostfunctionisespeciallyeasytogeneral-izetothesesituations.Ifweassumethereareninputs,eachwithapriceofwiði¼1,nÞ,thenthisfunctionisCðq,w1,…,wnÞ¼lnqþβ0þXni¼1βilnwiþ0:5Xni¼1Xnj¼1βijlnwilnwj,(vi)wherewehaveonceagainassumedconstantreturnstoscale.Thisfunctionrequiresβij¼βji,soeachtermforwhichi6¼jappearstwiceinthefinaldoublesum(whichexplainsthepresenceofthe0.5intheex-pression).Forthisfunctiontobehomogeneousofdegree1intheinputprices,itmustbethecasethatXni¼1βi¼1andXni¼1βij¼0.Twousefulpropertiesofthisfunctionare:•Inputsharestakethelinearformsi¼βiþXnj¼1βijlnwj.(vii)Again,thisshowswhythetranslogisusuallyestimatedinashareform.Sometimesaterminlnqisalsoaddedtotheshareequationstoallowforscaleeffectsontheshares(seeSydsæter,Strøm,andBerck,2000).•Theelasticityofsubstitutionbetweenanytwoinputsinthetranslogfunctionisgivenbysi,j¼1þsjβijsiβjjsisj.(viii)Hence,substitutabilitycanagainbejudgeddi-rectlyfromtheparametersestimatedforthetranslogfunction.E10.3SomeapplicationsThetranslogcostfunctionhasbecomethemainchoiceforempiricalstudiesofproduction.Twofactorsac-countforthispopularity.First,thefunctionallowsafairlycompletecharacterizationofsubstitutionpatternsamonginputs—itdoesnotrequirethatthedatafitanyprespecifiedpattern.Second,thefunction’sformatincorporatesinputpricesinaflexiblewaysothatonecanbereasonablysurethatheorshehascontrolledforsuchpricesinregressionanalysis.Whensuchcontrolisassured,measuresofotheraspectsofthecostfunction(suchasitsreturnstoscale)willbemorereliable.OneexampleofusingthetranslogfunctiontostudyinputsubstitutionisthestudybyWestbrookandBuckley(1990)oftheresponsesthatshippersmadetochangingrelativepricesofmovinggoodsthatresultedfromderegulationoftherailroadandtruckingindustriesintheUnitedStates.TheauthorslookspecificallyattheshippingoffruitsandvegetablesfromthewesternstatestoChicagoandNewYork.Theyfindrelativelyhighsubstitutionelasticitiesamongshippingoptionsandsoconcludethatderegu-lationhadsignificantwelfarebenefits.DoucouliagosandHone(2000)provideasimilaranalysisofderegu-lationofdairypricesinAustralia.Theyshowthatchangesinthepriceofrawmilkcauseddairyprocessingfirmstoundertakesignificantchangesininputusage.Theyalsoshowthattheindustryadoptedsignificantnewtechnologiesinresponsetothepricechange.AninterestingstudythatusesthetranslogprimarilytojudgereturnstoscaleisLatzko’s(1999)analysisoftheU.S.mutualfundindustry.Hefindsthattheelastic-ityoftotalcostswithrespecttothetotalassetsmanagedbythefundislessthan1forallbutthelargestfunds(thosewithmorethan$4billioninassets).Hence,theauthorconcludesthatmoneymanagementexhibitssubstantialreturnstoscale.Anumberofotherstudiesthatusethetranslogtoestimateeconomiesofscalefocusonmunicipalservices.Forexample,GarciaandThomas(2001)lookatwatersupplysystemsinlocalFrenchcommunities.Theyconcludethattherearesignificantoperatingeconomiesofscaleinsuchsystemsandthatsomemergingofsystemswouldmakesense.Yatchew(2000)reachesasimilarconclusionaboutelectricitydistributioninsmallcommunitiesinOntario,Canada.Hefindsthatthereareeconomiesofscaleforelectricitydistributionsystemsservinguptoabout20,000custo-mers.Again,someefficienciesmightbeobtainedfrommergingsystemsthataremuchsmallerthanthissize.ReferencesDoucouliagos,H.,andP.Hone.“DeregulationandSub-equilibriumintheAustralianDairyProcessingIndus-try.”EconomicRecord(June2000):152–62.Fuss,M.,andD.McFadden,Eds.ProductionEconomics:ADualApproachtoTheoryandApplications.Amsterdam:NorthHolland,1978.Garcia,S.,andA.Thomas.“TheStructureofMunicipalWaterSupplyCosts:ApplicationtoaPanelofFrench356Part3ProductionandSupply
LocalCommunities.”JournalofProductivityAnalysis(July2001):5–29.Latzko,D.“EconomiesofScaleinMutualFundAdministra-tion.”JournalofFinancialResearch(Fall1999):331–39.Sydsæter,K.,A.Strøm,andP.Berck.Economists’Mathe-maticalManual,3rded.Berlin:Springer-Verlag,2000.Westbrook,M.D.,andP.A.Buckley.“FlexibleFunctionalFormsandRegularity:AssessingtheCompetitiveRelationshipbetweenTruckandRailTransportation.”ReviewofEconomicsandStatistics(November1990):623–30.Yatchew,A.“ScaleEconomiesinElectricityDistribution:ASemiparametricAnalysis.”JournalofAppliedEconomet-rics(March/April2000):187–210.Chapter10CostFunctions357
CHAPTER11ProfitMaximizationInChapter10weexaminedthewayinwhichfirmsminimizecostsforanylevelofoutputtheychoose.Inthischapterwefocusonhowthelevelofoutputischosenbyprofit-maximizingfirms.Beforeinvestigatingthatdecision,however,itisappropriatetodiscussbrieflythenatureoffirmsandthewaysinwhichtheirchoicesshouldbeanalyzed.THENATUREANDBEHAVIOROFFIRMSAswepointedoutatthebeginningofouranalysisofproduction,afirmisanassociationofindividualswhohaveorganizedthemselvesforthepurposeofturninginputsintooutputs.Differentindividualswillprovidedifferenttypesofinputs,suchasworkers’skillsandvarietiesofcapitalequipment,withtheexpectationofreceivingsomesortofrewardfordoingso.ContractualrelationshipswithinfirmsThenatureofthecontractualrelationshipbetweentheprovidersofinputstoafirmmaybequitecomplicated.Eachprovideragreestodevotehisorherinputtoproductionactivitiesunderasetofunderstandingsabouthowitistobeusedandwhatbenefitistobeexpectedfromthatuse.Insomecasesthesecontractsareexplicit.Workersoftennegotiatecontractsthatspecifyinconsiderabledetailwhathoursaretobeworked,whatrulesofworkaretobefollowed,andwhatrateofpayistobeexpected.Similarly,capitalownersinvestinafirmunderasetofexplicitlegalprinciplesaboutthewaysinwhichthatcapitalmaybeused,thecompensationtheownercanexpecttoreceive,andwhethertheownerretainsanyprofitsorlossesafteralleconomiccostshavebeenpaid.Despitetheseformalarrangements,itisclearthatmanyoftheunderstandingsbetweentheprovidersofinputstoafirmareimplicit;relationshipsbetweenmanagersandworkersfollowcertainproceduresaboutwhohastheauthoritytodowhatinmakingproductiondecisions.Amongworkers,numerousimplicitunderstandingsexistabouthowworktasksaretobeshared;andcapitalownersmaydelegatemuchoftheirauthoritytomanagersandworkerstomakedecisionsontheirbehalf(GeneralMotors’shareholders,forexample,areneverinvolvedinhowassembly-lineequipmentwillbeused,thoughtechnicallytheyownit).Alloftheseexplicitandimplicitrelationshipschangeinresponsetoexperiencesandeventsexternaltothefirm.Muchasabasketballteamwilltryoutnewplaysanddefensivestrategies,sotoofirmswillalterthenatureoftheirinternalorganizationstoachievebetterlong-termresults.11TheinitialdevelopmentofthetheoryofthefirmfromthenotionofthecontractualrelationshipsinvolvedcanbefoundinR.H.Coase,“TheNatureoftheFirm,”Economica(November1937):386–405.358
Modelingfirms’behaviorAlthoughsomeeconomistshaveadopteda“behavioral”approachtostudyingfirms’deci-sions,mosthavefoundthatapproachtoocumbersomeforgeneralpurposes.Rather,theyhaveadopteda“holistic”approachthattreatsthefirmasasingledecision-makingunitandsweepsawayallthecomplicatedbehavioralissuesaboutrelationshipsamonginputproviders.Underthisapproach,itisoftenconvenienttoassumethatafirm’sdecisionsaremadebyasingledictatorialmanagerwhorationallypursuessomegoal,usuallyprofitmaximization.Thatistheapproachwetakehere.InChapter18welookatsomeoftheinformationalissuesthatariseinintrafirmcontracts.PROFITMAXIMIZATIONMostmodelsofsupplyassumethatthefirmanditsmanagerpursuethegoalofachievingthelargesteconomicprofitspossible.Hencewewillusethefollowingdefinition.DEFINITIONProfit-maximizingfirm.Aprofit-maximizingfirmchoosesbothitsinputsanditsoutputswiththesolegoalofachievingmaximumeconomicprofits.Thatis,thefirmseekstomakethedifferencebetweenitstotalrevenuesanditstotaleconomiccostsaslargeaspossible.Thisassumption—thatfirmsseekmaximumeconomicprofits—hasalonghistoryineco-nomicliterature.Ithasmuchtorecommendit.Itisplausiblebecausefirmownersmayindeedseektomaketheirassetasvaluableaspossibleandbecausecompetitivemarketsmaypunishfirmsthatdonotmaximizeprofits.Theassumptionalsoyieldsinterestingtheoreticalresultsthatcanexplainactualfirms’decisions.ProfitmaximizationandmarginalismIffirmsarestrictprofitmaximizers,theywillmakedecisionsina“marginal”way.Theentrepreneurwillperformtheconceptualexperimentofadjustingthosevariablesthatcanbecontrolleduntilitisimpossibletoincreaseprofitsfurther.Thisinvolves,say,lookingattheincremental,or“marginal,”profitobtainablefromproducingonemoreunitofoutput,orattheadditionalprofitavailablefromhiringonemorelaborer.Aslongasthisincrementalprofitispositive,theextraoutputwillbeproducedortheextralaborerwillbehired.Whentheincrementalprofitofanactivitybecomeszero,theentrepreneurhaspushedthatactivityfarenough,anditwouldnotbeprofitabletogofurther.Inthischapter,wewillexploretheconsequencesofthisassumptionbyusingincreasinglysophisticatedmathematics.OutputchoiceFirstweexamineatopicthatshouldbeveryfamiliar:whatoutputlevelafirmwillproduceinordertoobtainmaximumprofits.Afirmsellssomelevelofoutput,q,atamarketpriceofpperunit.TotalrevenuesðRÞaregivenbyRðqÞ¼pðqÞ⋅q,(11.1)wherewehaveallowedforthepossibilitythatthesellingpricethefirmreceivesmightbeaffectedbyhowmuchitsells.Intheproductionofq,certaineconomiccostsareincurredand,asinChapter10,wewilldenotethesebyCðqÞ.ThedifferencebetweenrevenuesandcostsiscalledeconomicprofitsðπÞ.Becausebothrevenuesandcostsdependonthequantityproduced,economicprofitswillalso.Thatis,πðqÞ¼pðqÞ⋅qCðqÞ¼RðqÞCðqÞ.(11.2)Chapter11ProfitMaximization359
ThenecessaryconditionforchoosingthevalueofqthatmaximizesprofitsisfoundbysettingthederivativeofEquation11.2withrespecttoqequalto0:2dπdq¼π0ðqÞ¼dRdqdCdq¼0,(11.3)sothefirst-orderconditionforamaximumisthatdRdq¼dCdq.(11.4)Thisisamathematicalstatementofthe“marginalrevenueequalsmarginalcost”ruleusuallystudiedinintroductoryeconomicscourses.Hencewehavethefollowing.OPTIMIZATIONPRINCIPLEProfitmaximization.Tomaximizeeconomicprofits,thefirmshouldchoosethatoutputforwhichmarginalrevenueisequaltomarginalcost.Thatis,MR¼dRdq¼dCdq¼MC.(11.5)Second-orderconditionsEquation11.4or11.5isonlyanecessaryconditionforaprofitmaximum.Forsufficiency,itisalsorequiredthatd2πdq2q¼q¼dπ0ðqÞdqq¼q<0,(11.6)orthat“marginal”profitmustbedecreasingattheoptimallevelofq.Forqlessthanq(theoptimallevelofoutput),profitmustbeincreasing½π0ðqÞ>0;andforqgreaterthanq,profitmustbedecreasing½π0ðqÞ<0.Onlyifthisconditionholdshasatruemaximumbeenachieved.Clearlytheconditionholdsifmarginalrevenueisdecreasing(orconstant)inqandmarginalcostisincreasinginq.GraphicalanalysisTheserelationshipsareillustratedinFigure11.1,wherethetoppaneldepictstypicalcostandrevenuefunctions.Forlowlevelsofoutput,costsexceedrevenuesandsoeconomicprofitsarenegative.Inthemiddlerangesofoutput,revenuesexceedcosts;thismeansthatprofitsarepositive.Finally,athighlevelsofoutput,costsrisesharplyandagainexceedrevenues.Theverticaldistancebetweentherevenueandcostcurves(thatis,profits)isshowninFigure11.1b.Hereprofitsreachamaximumatq.Atthislevelofoutputitisalsotruethattheslopeoftherevenuecurve(marginalrevenue)isequaltotheslopeofthecostcurve(marginalcost).Itisclearfromthefigurethatthesufficientconditionsforamaximumarealsosatisfiedatthispoint,becauseprofitsareincreasingtotheleftofqanddecreasingtotherightofq.Outputlevelqisthereforeatrueprofitmaximum.Thisisnotsoforoutputlevelq.Althoughmarginalrevenueisequaltomarginalcostatthisoutput,profitsareinfactataminimumthere.2Noticethatthisisanunconstrainedmaximizationproblem;theconstraintsintheproblemareimplicitintherevenueandcostfunctions.Specifically,thedemandcurvefacingthefirmdeterminestherevenuefunction,andthefirm’sproductionfunction(togetherwithinputprices)determinesitscosts.360Part3ProductionandSupply
MARGINALREVENUEItistherevenueobtainedfromsellingonemoreunitofoutputthatisrelevanttotheprofit-maximizingfirm’soutputdecision.Ifthefirmcansellallitwisheswithouthavinganyeffectonmarketprice,themarketpricewillindeedbetheextrarevenueobtainedfromsellingonemoreunit.Phrasedinanotherway:ifafirm’soutputdecisionswillnotaffectmarketprice,thenmarginalrevenueisequaltothepriceatwhichaunitsells.FIGURE11.1MarginalRevenueMustEqualMarginalCostforProfitMaximizationBecauseprofitsaredefinedtoberevenuesðRÞminuscostsðCÞ,itisclearthatprofitsreachamaximumwhentheslopeoftherevenuefunction(marginalrevenue)isequaltotheslopeofthecostfunction(marginalcost).Thisequalityisonlyanecessaryconditionforamaximum,asmaybeseenbycomparingpointsq(atruemaximum)andq(atrueminimum),pointsatwhichmarginalrevenueequalsmarginalcost.Revenues,costsProfitsLossesOutput per periodOutput per period(a)(b)q**q*q*CR0Chapter11ProfitMaximization361
Afirmmaynotalwaysbeabletosellallitwantsattheprevailingmarketprice,however.Ifitfacesadownward-slopingdemandcurveforitsproduct,thenmoreoutputcanbesoldonlybyreducingthegood’sprice.Inthiscasetherevenueobtainedfromsellingonemoreunitwillbelessthanthepriceofthatunitbecause,inordertogetconsumerstotaketheextraunit,thepriceofallotherunitsmustbelowered.Thisresultcanbeeasilydemonstrated.Asbefore,totalrevenueðRÞistheproductofthequantitysoldðqÞtimesthepriceatwhichitissoldðpÞ,whichmayalsodependonq.MarginalrevenueðMRÞisthendefinedtobethechangeinRresultingfromachangeinq.DEFINITIONMarginalrevenue.Wedefinemarginalrevenue¼MRðqÞ¼dRdq¼d½pðqÞ⋅qdq¼pþq⋅dpdq:(11.7)Noticethatthemarginalrevenueisafunctionofoutput.Ingeneral,MRwillbedifferentfordifferentlevelsofq.FromEquation11.7itiseasytoseethat,ifpricedoesnotchangeasquantityincreasesðdp=dq¼0Þ,marginalrevenuewillbeequaltoprice.Inthiscasewesaythatthefirmisapricetakerbecauseitsoutputdecisionsdonotinfluencethepriceitreceives.Ontheotherhand,ifpricefallsasquantityincreasesðdp=dq<0Þ,marginalrevenuewillbelessthanprice.Aprofit-maximizingmanagermustknowhowincreasesinoutputwillaffectthepricereceivedbeforemakinganoptimaloutputdecision.Ifincreasesinqcausemarketpricetofall,thismustbetakenintoaccount.EXAMPLE11.1MarginalRevenuefromaLinearDemandFunctionSupposeashopsellingsubsandwichs(alsocalledgrinders,torpedoes,or,inPhiladelphia,hoagies)facesalineardemandcurveforitsdailyoutputoverperiodðqÞoftheformq¼10010p.(11.8)Solvingforthepricetheshopreceives,wehavep¼q10þ10,(11.9)andtotalrevenues(asafunctionofq)aregivenbyR¼pq¼q210þ10q.(11.10)Thesubfirm’smarginalrevenuefunctionisMR¼dRdq¼q5þ10,(11.11)andinthiscaseMR
loweroutputlevelwillresultinlowermarginalcoststomeetthislowerprice.Byconsideringallpossiblepricesthefirmmightface,wecanseebythemarginalcostcurvehowmuchoutputthefirmshouldsupplyateachprice.Theshutdowndecision.Forverylowpriceswemustbecarefulaboutthisconclusion.ShouldmarketpricefallbelowP1,theprofit-maximizingdecisionwouldbetoproducenothing.AsFigure11.3shows,priceslessthanP1donotcoveraveragevariablecosts.Therewillbealossoneachunitproducedinadditiontothelossofallfixedcosts.Byshuttingdownproduction,thefirmmuststillpayfixedcostsbutavoidsthelossesincurredoneachunitproduced.Because,intheshortrun,thefirmcannotclosedownandavoidallcosts,itsbestdecisionistoproducenooutput.Ontheotherhand,apriceonlyslightlyaboveP1meansthefirmshouldproducesomeoutput.Althoughprofitsmaybenegative(whichtheywillbeifpricefallsbelowshort-runaveragetotalcosts,thecaseatP),theprofit-maximizingdecisionistocontinueproductionaslongasvariablecostsarecovered.Fixedcostsmustbepaidinanycase,andanypricethatcoversvariablecostswillproviderevenueasanoffsettothefixedcosts.5Hencewehaveacompletedescriptionofthisfirm’ssupplydecisionsinresponsetoalternativepricesforitsoutput.Thesearesummarizedinthefollowingdefinition.DEFINITIONShort-runsupplycurve.Thefirm’sshort-runsupplycurveshowshowmuchitwillproduceatvariouspossibleoutputprices.Foraprofit-maximizingfirmthattakesthepriceofitsoutputasgiven,thiscurveconsistsofthepositivelyslopedsegmentofthefirm’sshort-runmarginalcostabovethepointofminimumaveragevariablecost.Forpricesbelowthislevel,thefirm’sprofit-maximizingdecisionistoshutdownandproducenooutput.Ofcourse,anyfactorthatshiftsthefirm’sshort-runmarginalcostcurve(suchaschangesininputpricesorchangesintheleveloffixedinputsemployed)willalsoshifttheshort-runsupplycurve.InChapter12wewillmakeextensiveuseofthistypeofanalysistostudytheoperationsofperfectlycompetitivemarkets.EXAMPLE11.3Short-RunSupplyInExample10.5wecalculatedtheshort-runtotal-costfunctionfortheCobb-DouglasproductionfunctionasSCðv,w,q,kÞ¼vk1þwq1=βkα=β1,(11.17)(continued)5Somealgebramayclarifymatters.Weknowthattotalcostsequalthesumoffixedandvariablecosts,SC¼SFCþSVC,andthatprofitsaregivenbyπ¼RSC¼P⋅qSFCSVC.Ifq¼0,thenvariablecostsandrevenuesare0andsoπ¼SFC.Thefirmwillproducesomethingonlyifπ>SFC.ButthatmeansthatP⋅q>SVCorP>SVC=q.Chapter11ProfitMaximization367
EXAMPLE11.3CONTINUEDwherek1isthelevelofcapitalinputthatisheldconstantintheshortrun.6Short-runmarginalcostiseasilycomputedasSMCðv,w,q,k1Þ¼∂SC∂q¼wβqð1βÞ=βkα=β1.(11.18)Noticethatshort-runmarginalcostisincreasinginoutputforallvaluesofq.Short-runprofitmaximizationforaprice-takingfirmrequiresthatoutputbechosensothatmarketpriceðPÞisequaltoshort-runmarginalcost:SMC¼wβqð1βÞ=βkα=β1¼P,(11.19)andwecansolveforquantitysuppliedasq¼wββ=ð1βÞkα=ð1βÞ1Pβ=ð1βÞ.(11.20)Thissupplyfunctionprovidesanumberofinsightsthatshouldbefamiliarfromearliereconomicscourses:(1)thesupplycurveispositivelysloped—increasesinPcausethefirmtoproducemorebecauseitiswillingtoincurahighermarginalcost;7(2)thesupplycurveisshiftedtotheleftbyincreasesinthewagerate,w—thatis,foranygivenoutputprice,lessissuppliedwithahigherwage;(3)thesupplycurveisshiftedoutwardbyincreasesincapitalinput,k—withmorecapitalintheshortrun,thefirmincursagivenlevelofshort-runmarginalcostatahigheroutputlevel;and(4)therentalrateofcapital,v,isirrelevanttoshort-runsupplydecisionsbecauseitisonlyacomponentoffixedcosts.Numericalexample.WecanpursueoncemorethenumericalexamplefromExample10.5,whereα¼β¼0.5,v¼3,w¼12,andk1¼80.Forthesespecificparameters,thesupplyfunctionisq¼w0.51⋅ðk1Þ1⋅P1¼40⋅Pw¼40P12¼10P3.(11.21)Thatthiscomputationiscorrectcanbecheckedbycomparingthequantitysuppliedatvariouspriceswiththecomputationofshort-runmarginalcostinTable10.2.Forexample,ifP¼12thenthesupplyfunctionpredictsthatq¼40willbesupplied,andTable10.2showsthatthiswillagreewiththeP¼SMCrule.IfpriceweretodoubletoP¼24,anoutputlevelof80wouldbesuppliedand,again,Table10.2showsthatwhenq¼80,SMC¼24.Alowerprice(sayP¼6)wouldcauselesstobeproducedðq¼20Þ.BeforeadoptingEquation11.21asthesupplycurveinthissituation,weshouldalsocheckthefirm’sshutdowndecision.Isthereapricewhereitwouldbemoreprofitabletoproduceq¼0thantofollowtheP¼SMCrule?FromEquation11.17weknowthatshort-runvariablecostsaregivenbySVC¼wq1=βkα=β1(11.22)andsoSVCq¼wqð1βÞ=βkα=β1.(11.23)6Becausecapitalinputisheldconstant,theshort-runcostfunctionexhibitsincreasingmarginalcostandwillthereforeyieldauniqueprofit-maximizingoutputlevel.Ifwehadusedaconstantreturns-to-scaleproductionfunctioninthelongrun,therewouldhavebeennosuchuniqueoutputlevel.WediscussthispointlaterinthischapterandinChapter12.7Infact,theshort-runelasticityofsupplycanbereaddirectlyfromEquation11.20asβ=ð1βÞ.368Part3ProductionandSupply
AcomparisonofEquation11.23withEquation11.18showsthatSVC=q
welfaregain¼∫P2P1qðPÞdP¼∫P2P1∂Π∂PdP¼ΠðP2,…ÞΠðP1,…Þ.(11.30)Thus,thegeometricandmathematicalmeasuresofthewelfarechangeagree.Usingthisapproach,wecanalsomeasurehowmuchthefirmvaluestherighttoproduceattheprevailingmarketpricerelativetoasituationwhereitwouldproducenooutput.Ifwedenotetheshort-runshutdownpriceasP0(whichmayormaynotbeapriceofzero),thentheextraprofitsavailablefromfacingapriceofP1aredefinedtobeproducersurplus:producersurplus¼ΠðP1,…ÞΠðP0,…Þ¼∫P1P0qðPÞdP.(11.31)ThisisshownasareaP1BP0inFigure11.4.Hencewehavethefollowingformaldefinition.DEFINITIONProducersurplus.Producersurplusistheextrareturnthatproducersearnbymakingtransactionsatthemarketpriceoverandabovewhattheywouldearnifnothingwereproduced.Itisillustratedbythesizeoftheareabelowthemarketpriceandabovethesupplycurve.Inthisdefinitionwehavemadenodistinctionbetweentheshortrunandthelongrun,thoughourdevelopmentsofarhasinvolvedonlyshort-runanalysis.InthenextchapterwewillseethatthesamedefinitioncanservedualdutybydescribingproducersurplusinthelongFIGURE11.4ChangesinShort-RunProducerSurplusMeasureFirmProfitsIfpricerisesfromP1toP2thentheincreaseinthefirm’sprofitsisgivenbyareaP2ABP1.AtapriceofP1,thefirmearnsshort-runproducersurplusgivenbyareaP0BP1.Thismeasurestheincreaseinshort-runprofitsforthefirmwhenitproducesq1ratherthanshuttingdownwhenpriceisP0orbelow.MarketpriceP2qq1SMCq2P1P0AB372Part3ProductionandSupply
run,sousingthisgenericdefinitionworksforbothconcepts.Ofcourse,aswewillshow,themeaningoflong-runproducersurplusisquitedifferentfromwhatwehavestudiedhere.Onemoreaspectofshort-runproducersurplusshouldbepointedout.Becausethefirmproducesnooutputatitsshutdownprice,weknowthatðP0,…Þ¼vk1;thatis,profitsattheshutdownpricearesolelymadeupoflossesofallfixedcosts.Therefore,producersurplus¼ΠðP1,…ÞΠðP0,…Þ¼ΠðP1,…Þðvk1Þ¼ΠðP1,…Þþvk1.(11.32)Thatis,producersurplusisgivenbycurrentprofitsbeingearnedplusshort-runfixedcosts.Furthermanipulationshowsthatmagnitudecanalsobeexpressedasproducersurplus¼ΠðP1,…ÞΠðP0,…Þ¼P1q1vk1wl1þvk1¼P1q1wl1.(11.33)Inwords,afirm’sshort-runproducersurplusisgivenbytheextenttowhichitsrevenuesexceeditsvariablecosts—thisis,indeed,whatthefirmgainsbyproducingintheshortrunratherthanshuttingdownandproducingnothing.EXAMPLE11.4AShort-RunProfitFunctionThesevarioususesoftheprofitfunctioncanbeillustratedwiththeCobb-Douglasproduc-tionfunctionwehavebeenusing.Sinceq¼kαlβandsincewetreatcapitalasfixedatk1intheshortrun,itfollowsthatprofitsareπ¼Pkα1lβvk1wl.(11.34)Tofindtheprofitfunctionweusethefirst-orderconditionsforamaximumtoeliminatelfromthisexpression:∂π∂l¼βPkα1lβ1w¼0sol¼wβPkα11=ðβ1Þ.(11.35)WecansimplifytheprocessofsubstitutingthisbackintotheprofitequationbylettingA¼ðw=βPkα1Þ.Makinguseofthisshortcut,wehaveΠðP,v,w,k1Þ¼Pkα1Aβ=ðβ1Þvk1wA1=ðβ1Þ¼wA1=ðβ1ÞPkα1Aw1vk1¼1βββ=ðβ1Þwβ=ðβ1ÞP1=ð1βÞkα=ð1βÞ1vk1.(11.36)Thoughadmittedlymessy,thissolutioniswhatwaspromised—thefirm’smaximalprofitsareexpressedasafunctionofonlythepricesitfacesanditstechnology.Noticethatthefirm’sfixedcostsðvk1Þenterthisexpressioninasimplelinearway.Thepricesthefirmfacesdeterminetheextenttowhichrevenuesexceedvariablecosts;thenfixedcostsaresubtractedtoobtainthefinalprofitnumber.Becauseitisalwayswisetocheckthatone’salgebraiscorrect,let’stryoutthenumericalexamplewehavebeenusing.Withα¼β¼0.5,v¼3,w¼12,andk1¼80,weknowthatatapriceofP¼12thefirmwillproduce40unitsofoutputanduselaborinputofl¼20.Henceprofitswillbeπ¼RC¼12⋅403⋅8012⋅20¼0.ThefirmwilljustbreakevenatapriceofP¼12.UsingtheprofitfunctionyieldsΠðP,v,w,k1Þ¼Πð12,3,12,80Þ¼0:25⋅121⋅122⋅803⋅80¼0.(11.37)Thus,atapriceof12,thefirmearns240inprofitsonitsvariablecosts,andthesearepreciselyoffsetbyfixedcostsinarrivingatthefinaltotal.Withahigherpriceforitsoutput,(continued)Chapter11ProfitMaximization373
EXAMPLE11.4CONTINUEDthefirmearnspositiveprofits.Ifthepricefallsbelow12,however,thefirmincursshort-runlosses.12Hotelling’slemma.WecanusetheprofitfunctioninEquation11.36togetherwiththeenvelopetheoremtoderivethisfirm’sshort-runsupplyfunction:qðP,v,w,k1Þ¼∂Π∂P¼wββ=ðβ1Þkα=ð1βÞ1Pβ=ð1βÞ,(11.38)whichispreciselytheshort-runsupplyfunctionthatwecalculatedinExample11.3(seeEquation11.20).Producersurplus.Wecanalsousethesupplyfunctiontocalculatethefirm’sshort-runproducersurplus.Todoso,weagainreturntoournumericalexample:α¼β¼0.5,v¼3,w¼12,andk1¼80.Withtheseparameters,theshort-runsupplyrelationshipisq¼10P=3andtheshutdownpriceiszero.Hence,atapriceofP¼12,producersurplusisproducersurplus¼∫12010P3dP¼10P26120¼240.(11.39)Thispreciselyequalsshort-runprofitsatapriceof12ðπ¼0Þplusshort-runfixedcostsð¼vk1¼3⋅80¼240Þ.Ifpriceweretoriseto(say)15thenproducersurpluswouldincreaseto375,whichwouldstillconsistof240infixedcostsplustotalprofitsatthehigherpriceð¼135Þ.QUERY:Howistheamountofshort-runproducersurplushereaffectedbychangesintherentalrateforcapital,v?Howisitaffectedbychangesinthewage,w?PROFITMAXIMIZATIONANDINPUTDEMANDThusfar,wehavetreatedthefirm’sdecisionproblemasoneofchoosingaprofit-maximizinglevelofoutput.Butourdiscussionthroughouthasmadeclearthatthefirm’soutputis,infact,determinedbytheinputsitchoosestoemploy,arelationshipthatissummarizedbytheproductionfunctionq¼fðk,lÞ.Consequently,thefirm’seconomicprofitscanalsobeexpressedasafunctionofonlytheinputsitemploys:πðk,lÞ¼PqCðqÞ¼Pfðk,lÞðvkþwlÞ.(11.40)Viewedinthisway,theprofit-maximizingfirm’sdecisionproblembecomesoneofchoos-ingtheappropriatelevelsofcapitalandlaborinput.13Thefirst-orderconditionsforamaximumare∂π∂k¼P∂f∂kv¼0,∂π∂l¼P∂f∂lw¼0.(11.41)12InTable10.2weshowedthatifq¼40thenSAC¼12.HencezeroprofitsarealsoindicatedbyP¼12¼SAC.13Throughoutourdiscussioninthissection,weassumethatthefirmisapricetakersothepricesofitsoutputanditsinputscanbetreatedasfixedparameters.Resultscanbegeneralizedfairlyeasilyinthecasewherepricesdependonquantity.374Part3ProductionandSupply
Theseconditionsmaketheintuitivelyappealingpointthataprofit-maximizingfirmshouldhireanyinputuptothepointatwhichtheinput’smarginalcontributiontorevenueisequaltothemarginalcostofhiringtheinput.Becausethefirmisassumedtobeapricetakerinitshiring,themarginalcostofhiringanyinputisequaltoitsmarketprice.Theinput’smarginalcontributiontorevenueisgivenbytheextraoutputitproduces(themarginalproduct)timesthatgood’smarketprice.Thisdemandconceptisgivenaspecialnameasfollows.DEFINITIONMarginalrevenueproduct.Themarginalrevenueproductistheextrarevenueafirmreceiveswhenitemploysonemoreunitofaninput.Intheprice-taking14case,MRPl¼PflandMRPk¼Pfk.Hence,profitmaximizationrequiresthatthefirmhireeachinputuptothepointatwhichitsmarginalrevenueproductisequaltoitsmarketprice.Noticealsothattheprofit-maximizingEquations11.41alsoimplycostminimizationbecauseRTS¼fl=fk¼w=v.Second-orderconditionsBecausetheprofitfunctioninEquation11.40dependsontwovariables,kandl,thesecond-orderconditionsforaprofitmaximumaresomewhatmorecomplexthaninthesingle-variablecaseweexaminedearlier.InChapter2weshowedthat,toensureatruemaximum,theprofitfunctionmustbeconcave.Thatis,πkk¼fkk<0,πll¼fll<0,(11.42)andπkkπllπ2kl¼fkkfllf2kl>0.Therefore,concavityoftheprofitrelationshipamountstorequiringthattheproductionfunctionitselfbeconcave.Noticethatdiminishingmarginalproductivityforeachinputisnotsufficienttoensureincreasingmarginalcosts.Expandingoutputusuallyrequiresthefirmtousemorecapitalandmorelabor.Thuswemustalsoensurethatincreasesincapitalinputdonotraisethemarginalproductivityoflabor(andtherebyreducemarginalcost)byalargeenoughamounttoreversetheeffectofdiminishingmarginalproductivityoflaboritself.ThesecondpartofEquation11.42thereforerequiresthatsuchcross-productivityeffectsberelativelysmall—thattheybedominatedbydiminishingmarginalproductivitiesoftheinputs.Iftheseconditionsaresatisfied,thenmarginalcostswillbeincreasingattheprofit-maximizingchoicesforkandl,andthefirst-orderconditionswillrepresentalocalmaximum.InputdemandfunctionsInprinciple,thefirst-orderconditionsforhiringinputsinaprofit-maximizingwaycanbemanipulatedtoyieldinputdemandfunctionsthatshowhowhiringdependsonthepricesthatthefirmfaces.Wewilldenotethesedemandfunctionsbycapitaldemand¼kðP,v,wÞ,labordemand¼lðP,v,wÞ.(11.43)Noticethat,contrarytotheinputdemandconceptsdiscussedinChapter10,thesedemandfunctionsare“unconditional”—thatis,theyimplicitlypermitthefirmtoadjustitsoutputtochangingprices.Hence,thesedemandfunctionsprovideamorecompletepictureofhowpricesaffectinputdemandthandidthecontingentdemandfunctionsintroducedinChapter10.Wehavealreadyshownthattheseinputdemandfunctionscanalsobederivedfromtheprofitfunctionthroughdifferentiation;inExample11.5,weshowthatprocess14Ifthefirmisnotapricetakerintheoutputmarket,thenthisdefinitionisgeneralizedbyusingmarginalrevenueinplaceofprice.Thatis,MRPl¼∂R=∂l¼∂R=∂q⋅∂q=∂l¼MR⋅MPl.Asimiliarderivationholdsforcapitalinput.Chapter11ProfitMaximization375
explicitly.First,however,wewillexplorehowchangesinthepriceofaninputmightbeexpectedtoaffectthedemandforit.Tosimplifymatterswelookonlyatlabordemand,buttheanalysisofthedemandforanyotherinputwouldbethesame.Ingeneral,weconcludethatthedirectionofthiseffectisunambiguousinallcases—thatis,∂l=∂w0nomatterhowmanyinputsthereare.Todevelopsomeintuitionforthisresult,webeginwithsomesimplecases.Single-inputcaseOnereasonforexpecting∂l=∂wtobenegativeisbasedonthepresumptionthatthemarginalphysicalproductoflabordeclinesasthequantityoflaboremployedincreases.Adecreaseinwmeansthatmorelabormustbehiredtobringabouttheequalityw¼P⋅MPl:AfallinwmustbemetbyafallinMPl(becausePisfixedasrequiredbytheceterisparibusassumption),andthiscanbebroughtaboutbyincreasingl.Thatthisargumentisstrictlycorrectforthecaseofoneinputcanbeshownasfollows.Writethetotaldifferentialoftheprofit-maximizingEquation11.41asdw¼P⋅∂fl∂l⋅∂l∂w⋅dwor∂l∂w¼1P⋅fll0,(11.44)wherethefinalinequalityholdsbecausethemarginalproductivityoflaborisassumedtobediminishingðfll0Þ.Hencewehaveshownthat,atleastinthesingle-inputcase,aceterisparibusincreaseinthewagewillcauselesslabortobehired.Two-inputcaseForthecaseoftwo(ormore)inputs,thestoryismorecomplex.Theassumptionofadiminishingmarginalphysicalproductoflaborcanbemisleadinghere.Ifwfalls,therewillnotonlybeachangeinlbutalsoachangeinkasanewcost-minimizingcombinationofinputsischosen.Whenkchanges,theentireflfunctionchanges(labornowhasadifferentamountofcapitaltoworkwith),andthesimpleargumentusedpreviouslycannotbemade.Firstwewilluseagraphicapproachtosuggestwhy,eveninthetwo-inputcase,∂l=∂wmustbenegative.Amoreprecise,mathematicalanalysisispresentedinthenextsection.SubstitutioneffectInsomeways,analyzingthetwo-inputcaseissimilartotheanalysisoftheindividual’sresponsetoachangeinthepriceofagoodthatwaspresentedinChapter5.Whenwfalls,wecandecomposethetotaleffectonthequantityoflhiredintotwocomponents.Thefirstofthesecomponentsiscalledthesubstitutioneffect.Ifqisheldconstantatq1,thentherewillbeatendencytosubstitutelforkintheproductionprocess.ThiseffectisillustratedinFigure11.5a.Becausetheconditionforminimizingthecostofproducingq1requiresthatRTS¼w=v,afallinwwillnecessitateamovementfrominputcombinationAtocombina-tionB.AndbecausetheisoquantsexhibitadiminishingRTS,itisclearfromthediagramthatthissubstitutioneffectmustbenegative.Adecreaseinwwillcauseanincreaseinlaborhiredifoutputisheldconstant.OutputeffectItisnotcorrect,however,toholdoutputconstant.Itiswhenweconsiderachangeinq(theoutputeffect)thattheanalogytotheindividual’sutility-maximizationproblembreaksdown.376Part3ProductionandSupply
Consumershavebudgetconstraints,butfirmsdonot.Firmsproduceasmuchastheavailabledemandallows.Toinvestigatewhathappenstothequantityofoutputproduced,wemustinvestigatethefirm’sprofit-maximizingoutputdecision.Achangeinw,becauseitchangesrelativeinputcosts,willshiftthefirm’sexpansionpath.Consequently,allthefirm’scostcurveswillbeshifted,andprobablysomeoutputlevelotherthanq1willbechosen.Figure11.5bshowswhatmightbeconsideredthe“normal”case.TherethefallinwcausesMCtoshiftdownwardtoMC0.Consequently,theprofit-maximizinglevelofoutputrisesfromq1toq2.Theprofit-maximizingcondition(P¼MC)isnowsatisfiedatahigherlevelofoutput.ReturningtoFigure11.5a,thisincreaseinoutputwillcauseevenmoreltobedemandedaslongaslisnotaninferiorinput(seebelow).TheresultofboththesubstitutionandoutputeffectswillbetomovetheinputchoicetopointConthefirm’sisoquantmap.Botheffectsworktoincreasethequantityoflaborhiredinresponsetoadecreaseintherealwage.TheanalysisprovidedinFigure11.5assumedthatthemarketprice(ormarginalrevenue,ifthisdoesnotequalprice)ofthegoodbeingproducedremainedconstant.Thiswouldbeanappropriateassumptionifonlyonefirminanindustryexperiencedafallinunitlaborcosts.However,ifthedeclinewereindustrywidethenaslightlydifferentanalysiswouldbere-quired.Inthatcaseallfirms’marginalcostcurveswouldshiftoutward,andhencetheindustrysupplycurvewouldshiftalso.Assumingthatoutputdemandisdownwardsloping,thiswillleadtoadeclineinproductprice.Outputfortheindustryandforthetypicalfirmwillstillincreaseand(asbefore)morelaborwillbehired,buttheprecisecauseoftheoutputeffectisdifferent(seeProblem11.11).Cross-priceeffectsWehaveshownthat,atleastinsimplecases,∂l=∂wisunambiguouslynegative;substitutionandoutputeffectscausemorelabortobehiredwhenthewageratefalls.FromFigure11.5itshouldbeclearthatnodefinitestatementcanbemadeabouthowcapitalusagerespondstoFIGURE11.5TheSubstitutionandOutputEffectsofaDecreaseinthePriceofaFactorWhenthepriceoflaborfalls,twoanalyticallydifferenteffectscomeintoplay.Oneofthese,thesubstitutioneffect,wouldcausemorelabortobepurchasedifoutputwereheldconstant.ThisisshownasamovementfrompointAtopointBin(a).AtpointB,thecost-minimizingconditionðRTS¼w=vÞissatisfiedforthenew,lowerw.Thischangeinw=vwillalsoshiftthefirm’sexpansionpathanditsmarginalcostcurve.AnormalsituationmightbefortheMCcurvetoshiftdownwardinresponsetoadecreaseinwasshownin(b).WiththisnewcurveðMC0Þahigherlevelofoutputðq2Þwillbechosen.Consequently,thehiringoflaborwillincrease(tol2),alsofromthisoutputeffect.Pricek1k2Pq1q2ABCl1l2lper periodkper periodq1q2Outputper period(a) The isoquant map(b) The output decisionMCMC′Chapter11ProfitMaximization377
thewagechange.Thatis,thesignof∂k=∂wisindeterminate.Inthesimpletwo-inputcase,afallinthewagewillcauseasubstitutionawayfromcapital;thatis,lesscapitalwillbeusedtoproduceagivenoutputlevel.However,theoutputeffectwillcausemorecapitaltobedemandedaspartofthefirm’sincreasedproductionplan.Thussubstitutionandoutputeffectsinthiscaseworkinoppositedirections,andnodefiniteconclusionaboutthesignof∂k=∂wispossible.AsummaryofsubstitutionandoutputeffectsTheresultsofthisdiscussioncanbesummarizedbythefollowingprinciple.OPTIMIZATIONPRINCIPLESubstitutionandoutputeffectsininputdemand.Whenthepriceofaninputfalls,twoeffectscausethequantitydemandedofthatinputtorise:1.thesubstitutioneffectcausesanygivenoutputleveltobeproducedusingmoreoftheinput;and2.thefallincostscausesmoreofthegoodtobesold,therebycreatinganadditionaloutputeffectthatincreasesdemandfortheinput.Forariseininputprice,bothsubstitutionandoutputeffectscausethequantityofaninputdemandedtodecline.Wenowprovideamoreprecisedevelopmentoftheseconceptsusingamathematicalapproachtotheanalysis.AmathematicaldevelopmentOurmathematicaldevelopmentofthesubstitutionandoutputeffectsthatarisefromthechangeinaninputpricefollowsthemethodweusedtostudytheeffectofpricechangesinconsumertheory.ThefinalresultisaSlutsky-styleequationthatresemblestheonewederivedinChapter5.However,theambiguitystemmingfromGiffen’sparadoxinthetheoryofconsumptiondemanddoesnotoccurhere.Westartwithareminderthatwehavetwoconceptsofdemandforanyinput(say,labor):(1)theconditionaldemandforlabor,denotedbylcðv,w,qÞ;and(2)theunconditionaldemandforlabor,whichisdenotedbylðP,v,wÞ.Attheprofit-maximizingchoiceforlaborinput,thesetwoconceptsagreeabouttheamountoflaborhired.Thetwoconceptsalsoagreeonthelevelofoutputproduced(whichisafunctionofalltheprices):lðP,v,wÞ¼lcðv,w,qÞ¼lcðv,w,qðP,v,wÞÞ.(11.45)Differentiationofthisexpressionwithrespecttothewage(andholdingtheotherpricesconstant)yields∂lðP,v,wÞ∂w¼∂lcðv,w,qÞ∂wþ∂lcðv,w,qÞ∂q⋅∂qðP,v,wÞ∂w.(11.46)So,theeffectofachangeinthewageonthedemandforlaboristhesumoftwocomponents:asubstitutioneffectinwhichoutputisheldconstant;andanoutputeffectinwhichthewagechangehasitseffectthroughchangingthequantityofoutputthatthefirmoptstoproduce.Thefirstoftheseeffectsisclearlynegative—becausetheproductionfunctionisquasi-concave(i.e.,ithasconvexisoquants),theoutput-contingentdemandforlabormustbenegativelysloped.Figure11.5bprovidesanintuitiveillustrationofwhytheoutputeffectinEqua-tion11.46isnegative,butitcanhardlybecalledaproof.Theparticularcomplicatingfactoristhepossibilitythattheinputunderconsideration(here,labor)maybeinferior.Perhapsoddly,inferiorinputsalsohavenegativeoutputeffects,butforratherarcanereasonsthatarebest378Part3ProductionandSupply
relegatedtoafootnote.15Thebottomline,however,isthatGiffen’sparadoxcannotoccurinthetheoryofthefirm’sdemandforinputs:inputdemandfunctionsareunambiguouslydownwardsloping.Inthiscasethetheoryofprofitmaximizationimposesmorerestrictionsonwhatmighthappenthandoesthetheoryofutilitymaximization.InExample11.5weshowhowdecomposinginputdemandintoitssubstitutionandoutputcomponentscanyieldusefulinsightsintohowchangesininputpricesactuallyaffectfirms.EXAMPLE11.5DecomposingInputDemandintoSubstitutionandOutputComponentsTostudyinputdemandweneedtostartwithaproductionfunctionthathastwofeatures:(1)thefunctionmustpermitcapital-laborsubstitution(becausesubstitutionisanimportantpartofthestory);and(2)theproductionfunctionmustexhibitincreasingmarginalcosts(sothatthesecond-orderconditionsforprofitmaximizationaresatisfied).Onefunctionthatsatisfiestheseconditionsisathree-inputCobb-Douglasfunctionwhenoneoftheinputsisheldfixed.So,letq¼fðk,l,gÞ¼k0.25l0.25g0.5,wherekandlarethefamiliarcapitalandlaborinputsandgisathirdinput(sizeofthefactory)thatisheldfixedatg¼16(squaremeters?)forallofouranalysis.Theshort-runproductionfunctionisthereforeq¼4k0.25l0.25.Weassumethatthefactorycanberentedatacostofrpersquaremeterperperiod.Tostudythedemandfor(say)laborinput,weneedboththetotalcostfunctionandtheprofitfunctionimpliedbythisproductionfunction.Mercifully,yourauthorhascomputedthesefunctionsforyouasCv,w,r,qðÞ¼q2v0.5w0.58þ16r(11.47)andΠðP,v,w,rÞ¼2P2v0.5w0.516r.(11.48)Asexpected,thecostsofthefixedinputðgÞenterasaconstantintheseequations,andthesecostswillplayverylittleroleinouranalysis.EnvelopeResultsLabor-demandrelationshipscanbederivedfrombothofthesefunctionsthroughdifferentiation:lcðv,w,r,qÞ¼∂C∂w¼q2v0.5w0.516(11.49)andlðP,v,w,rÞ¼∂Π∂w¼P2v0.5w1.5.(11.50)Thesefunctionsalreadysuggestthatachangeinthewagehasalargereffectontotallabordemandthanitdoesoncontingentlabordemandbecausetheexponentofwismorenegativeinthetotaldemandequation.Thatis,theoutputeffectmustalsobeplayingarolehere.Toseethatdirectly,weturntosomenumbers.(continued)15Inwords,anincreaseinthepriceofaninferiorreducesmarginalcostandtherebyincreasesoutput.Butwhenoutputincreases,lessoftheinferiorinputishired.Hencetheendresultisadecreaseinquantitydemandedinresponsetoanincreaseinprice.Aformalproofmakesextensiveuseofenveloperelationships:outputeffect¼∂lc∂q⋅∂q∂w¼∂lc∂q⋅∂l∂P¼∂lc∂q2⋅∂q∂P.Becausethesecond-orderconditionsforprofitmaximizationrequirethat∂q=∂P>0,theoutputeffectisclearlynegative.Chapter11ProfitMaximization379
EXAMPLE11.5CONTINUEDNumericalexample.Let’sstartagainwiththeassumedvaluesthatwehavebeenusinginseveralpreviousexamples:v¼3,w¼12,andP¼60.Let’sfirstcalculatewhatoutputthefirmwillchooseinthissituation.Todoso,weneeditssupplyfunction:qðP,v,w,rÞ¼∂Π∂P¼4Pv0.5w0.5.(11.51)Withthisfunctionandthepriceswehavechosen,thefirm’sprofit-maximizingoutputlevelis(surprise)q¼40.Withthesepricesandanoutputlevelof40,bothofthedemandfunctionspredictthatthefirmwillhirel¼50.BecausetheRTShereisgivenbyk=l,wealsoknowthatk=l¼w=v,soatthesepricesk¼200.Supposenowthatthewageraterisestow¼27butthattheotherpricesremainun-changed.Thefirm’ssupplyfunction(Equation11.51)showsthatitwillnowproduceq¼26.67.Theriseinthewageshiftsthefirm’smarginalcostcurveupwardand,withaconstantoutputprice,thiscausesthefirmtoproduceless.Toproducethisoutput,eitherofthelabor-demandfunctionscanbeusedtoshowthatthefirmwillhirel¼14.8.Hiringofcapitalwillalsofalltok¼133.3becauseofthelargereductioninoutput.Wecandecomposethefallinlaborhiringfroml¼50tol¼14.8intosubstitutionandoutputeffectsbyusingthecontingentdemandfunction.Ifthefirmhadcontinuedtoproduceq¼40eventhoughthewagerose,Equation11.49showsthatitwouldhaveusedl¼33.33.Capitalinputwouldhaveincreasedtok¼300.Becauseweareholdingoutputconstantatitsinitiallevelofq¼40,thesechangesrepresentthefirm’ssubstitutioneffectsinresponsetothehigherwage.Thedeclineinoutputneededtorestoreprofitmaximizationcausesthefirmtocutbackonitsoutput.Indoingsoitsubstantiallyreducesitsuseofbothinputs.Noticeinparticularthat,inthisexample,theriseinthewagenotonlycausedlaborusagetodeclinesharplybutalsocausedcapitalusagetofallbecauseofthelargeoutputeffect.QUERY:Howwouldthecalculationsinthisproblembeaffectedifallfirmshadexperiencedtheriseinwages?Wouldthedeclineinlabor(andcapital)demandbegreaterorsmallerthanfoundhere?SUMMARYInthischapterwestudiedthesupplydecisionofaprofit-maximizingfirm.Ourgeneralgoalwastoshowhowsuchafirmrespondstopricesignalsfromthemarketplace.Inad-dressingthatquestion,wedevelopedanumberofanalyticalresults.•Inordertomaximizeprofits,thefirmshouldchoosetoproducethatoutputlevelforwhichmarginalrevenue(therevenuefromsellingonemoreunit)isequaltomarginalcost(thecostofproducingonemoreunit).•Ifafirmisapricetakerthenitsoutputdecisionsdonotaffectthepriceofitsoutput,somarginalrevenueisgivenbythisprice.Ifthefirmfacesadownward-slopingde-mandforitsoutput,however,thenitcansellmoreonlyatalowerprice.Inthiscasemarginalrevenuewillbelessthanpriceandmayevenbenegative.•MarginalrevenueandthepriceelasticityofdemandarerelatedbytheformulaMR¼P1þ1eq,p !,wherePisthemarketpriceofthefirm’soutputandeq,pisthepriceelasticityofdemandforitsproduct.•Thesupplycurveforaprice-taking,profit-maximizingfirmisgivenbythepositivelyslopedportionofitsmar-ginalcostcurveabovethepointofminimumaveragevariablecost(AVC).IfpricefallsbelowminimumAVC,thefirm’sprofit-maximizingchoiceistoshutdownandproducenothing.•Thefirm’sreactionstochangesinthevariouspricesitfacescanbestudiedthroughuseofitsprofitfunction,380Part3ProductionandSupply
PROBLEMS11.1John’sLawnMovingServiceisasmallbusinessthatactsasapricetaker(i.e.,MR¼P).Theprevailingmarketpriceoflawnmowingis$20peracre.John’scostsaregivenbytotalcost¼0.1q2þ10qþ50,whereq¼thenumberofacresJohnchoosestocutaday.a.HowmanyacresshouldJohnchoosetocutinordertomaximizeprofit?b.CalculateJohn’smaximumdailyprofit.c.GraphtheseresultsandlabelJohn’ssupplycurve.11.2Wouldalump-sumprofitstaxaffecttheprofit-maximizingquantityofoutput?Howaboutapropor-tionaltaxonprofits?Howaboutataxassessedoneachunitofoutput?Howaboutataxonlaborinput?11.3Thisproblemconcernstherelationshipbetweendemandandmarginalrevenuecurvesforafewfunctionalforms.a.Showthat,foralineardemandcurve,themarginalrevenuecurvebisectsthedistancebetweentheverticalaxisandthedemandcurveforanyprice.b.Showthat,foranylineardemandcurve,theverticaldistancebetweenthedemandandmarginalrevenuecurvesis1=b⋅q,wherebð<0Þistheslopeofthedemandcurve.c.Showthat,foraconstantelasticitydemandcurveoftheformq¼aPb,theverticaldistancebetweenthedemandandmarginalrevenuecurvesisaconstantratiooftheheightofthedemandcurve,withthisconstantdependingonthepriceelasticityofdemand.d.Showthat,foranydownward-slopingdemandcurve,theverticaldistancebetweenthedemandandmarginalrevenuecurvesatanypointcanbefoundbyusingalinearapproximationtothedemandcurveatthatpointandapplyingtheproceduredescribedinpart(b).e.Graphtheresultsofparts(a)–(d)ofthisproblem.ðP,v,wÞ.Thatfunctionshowsthemaximumprofitsthatthefirmcanachievegiventhepriceforitsoutput,thepricesofitsinput,anditsproductiontechnology.Theprofitfunctionyieldsparticularlyusefulenveloperesults.Differentiationwithrespecttomarketpriceyieldsthesupplyfunctionwhiledifferentiationwithre-specttoanyinputpriceyields(thenegativeof)thedemandfunctionforthatinput.•Short-runchangesinmarketpriceresultinchangestothefirm’sshort-runprofitability.Thesecanbemeasuredgraphicallybychangesinthesizeofproducersurplus.Theprofitfunctioncanalsobeusedtocalculatechangesinproducersurplus.•Profitmaximizationprovidesatheoryofthefirm’sde-riveddemandforinputs.Thefirmwillhireanyinputuptothepointatwhichitsmarginalrevenueproductisjustequaltoitsper-unitmarketprice.Increasesinthepriceofaninputwillinducesubstitutionandoutputeffectsthatcausethefirmtoreducehiringofthatinput.Chapter11ProfitMaximization381
11.4UniversalWidgetproduceshigh-qualitywidgetsatitsplantinGulch,Nevada,forsalethroughouttheworld.ThecostfunctionfortotalwidgetproductionðqÞisgivenbytotalcost¼0.25q2.WidgetsaredemandedonlyinAustralia(wherethedemandcurveisgivenbyq¼1002P)andLapland(wherethedemandcurveisgivenbyq¼1004P).IfUniversalWidgetcancontrolthequantitiessuppliedtoeachmarket,howmanyshoulditsellineachlocationinordertomaximizetotalprofits?Whatpricewillbechargedineachlocation?11.5Theproductionfunctionforafirminthebusinessofcalculatorassemblyisgivenbyq¼2ffiffilp,whereqdenotesfinishedcalculatoroutputandldenoteshoursoflaborinput.Thefirmisapricetakerbothforcalculators(whichsellforP)andforworkers(whichcanbehiredatawagerateofwperhour).a.Whatisthetotalcostfunctionforthisfirm?b.Whatistheprofitfunctionforthisfirm?c.Whatisthesupplyfunctionforassembledcalculators½qðP,wÞ?d.Whatisthisfirm’sdemandforlaborfunction½lðP,wÞ?e.Describeintuitivelywhythesefunctionshavetheformtheydo.11.6Themarketforhigh-qualitycaviarisdependentontheweather.Iftheweatherisgood,therearemanyfancypartiesandcaviarsellsfor$30perpound.Inbadweatheritsellsforonly$20perpound.Caviarproducedoneweekwillnotkeepuntilthenextweek.AsmallcaviarproducerhasacostfunctiongivenbyC¼0:5q2þ5qþ100,whereqisweeklycaviarproduction.Productiondecisionsmustbemadebeforetheweather(andthepriceofcaviar)isknown,butitisknownthatgoodweatherandbadweathereachoccurwithaprobabilityof0.5.a.Howmuchcaviarshouldthisfirmproduceifitwishestomaximizetheexpectedvalueofitsprofits?b.Supposetheownerofthisfirmhasautilityfunctionoftheformutility¼ffiffiffiffiπp,whereπisweeklyprofits.Whatistheexpectedutilityassociatedwiththeoutputstrategydefinedinpart(a)?c.Canthisfirmownerobtainahigherutilityofprofitsbyproducingsomeoutputotherthanthatspecifiedinparts(a)and(b)?Explain.d.Supposethisfirmcouldpredictnextweek’spricebutcouldnotinfluencethatprice.Whatstrategywouldmaximizeexpectedprofitsinthiscase?Whatwouldexpectedprofitsbe?382Part3ProductionandSupply
11.7TheAcmeHeavyEquipmentSchoolteachesstudentshowtodriveconstructionmachinery.Thenumberofstudentsthattheschoolcaneducateperweekisgivenbyq¼10minðk,lÞr,wherekisthenumberofbackhoesthefirmrentsperweek,listhenumberofinstructorshiredeachweek,andγisaparameterindicatingthereturnstoscaleinthisproductionfunction.a.Explainwhydevelopmentofaprofit-maximizingmodelhererequires0<γ<1.b.Suppposingγ¼0.5,calculatethefirm’stotalcostfunctionandprofitfunction.c.Ifv¼1000,w¼500,andP¼600,howmanystudentswillAcmeserveandwhatareitsprofits?d.IfthepricestudentsarewillingtopayrisestoP¼900,howmuchwillprofitschange?e.GraphAcme’ssupplycurveforstudentslots,andshowthattheincreaseinprofitscalculatedinpart(d)canbeplottedonthatgraph.11.8Howwouldyouexpectanincreaseinoutputprice,P,toaffectthedemandforcapitalandlaborinputs?a.Explaingraphicallywhy,ifneitherinputisinferior,itseemsclearthatariseinPmustnotreducethedemandforeitherfactor.b.Showthatthegraphicalpresumptionfrompart(a)isdemonstratedbytheinputdemandfunctionsthatcanbederivedintheCobb-Douglascase.c.UsetheprofitfunctiontoshowhowthepresenceofinferiorinputswouldleadtoambiguityintheeffectofPoninputdemand.AnalyticalProblems11.9ACESprofitfunctionWithaCESproductionfunctionoftheformq¼ðkρþlρÞγ=ρawholelotofalgebraisneededtocomputetheprofitfunctionasðP,v,wÞ¼KP1=ð1γÞðv1σþw1σÞγ=ð1σÞðγ1Þ,whereσ¼1=ð1ρÞandKisaconstant.a.Ifyouareagluttonforpunishment(orifyourinstructoris),provethattheprofitfunctiontakesthisform.PerhapstheeasiestwaytodosoistostartfromtheCEScostfunctioninExample10.2.b.Explainwhythisprofitfunctionprovidesareasonablerepresentationofafirm’sbehavioronlyfor0<γ<1.c.ExplaintheroleoftheelasticityofsubstitutionðσÞinthisprofitfunction.d.Whatisthesupplyfunctioninthiscase?Howdoesσdeterminetheextenttowhichthatfunctionshiftswheninputpriceschange?e.Derivetheinputdemandfunctionsinthiscase.Howarethesefunctionsaffectedbythesizeofσ?11.10SomeenveloperesultsYoung’stheoremcanbeusedincombinationwiththeenveloperesultsinthischaptertoderivesomeusefulresults.a.Showthat∂lðP,v,wÞ=∂v¼∂kðP,v,wÞ=∂w.Interpretthisresultusingsubtitutionandoutputeffects.b.Usetheresultfrompart(a)toshowhowaunittaxonlaborwouldbeexpectedtoaffectcapitalinput.c.Showthat∂q=∂w¼∂l=∂P.Interpretthisresult.d.Usetheresultfrompart(c)todiscusshowaunittaxonlaborinputwouldaffectquantitysupplied.Chapter11ProfitMaximization383
11.11MoreonthederiveddemandwithtwoinputsThedemandforanyinputdependsultimatelyonthedemandforthegoodsthatinputproduces.Thiscanbeshownmostexplicitlybyderivinganentireindustry’sdemandforinputs.Todoso,weassumethatanindustryproducesahomogeneousgood,Q,underconstantreturnstoscaleusingonlycapitalandlabor.ThedemandfunctionforQisgivenbyQ¼DðPÞ,wherePisthemarketpriceofthegoodbeingproduced.Becauseoftheconstantreturns-to-scaleassumption,P¼MC¼AC.ThroughoutthisproblemletCðv,w,1Þbethefirm’sunitcostfunction.a.ExplainwhythetotalindustrydemandsforcapitalandlaboraregivenbyK¼QCvandL¼QCw.b.Showthat∂K∂v¼QCvvþD0C2vand∂L∂w¼QCwwþD0C2w.c.ProvethatCvv¼wvCvwandCww¼vwCvw.d.Usetheresultsfromparts(b)and(c)togetherwiththeelasticityofsubstitutiondefinedasσ¼CCvw=CvCwtoshowthat∂K∂v¼wLQ⋅σKvCþD0K2Q2and∂L∂w¼vKQ⋅σLwCþD0L2Q2.e.Convertthederivativesinpart(d)intoelasticitiestoshowthateK,v¼sLσþsKeQ,PandeL,w¼sKσþsLeQ,P,whereeQ,Pisthepriceelasticityofdemandfortheproductbeingproduced.f.Discusstheimportanceoftheresultsinpart(e)usingthenotionsofsubstitutionandoutputeffectsfromChapter11.Note:ThenotionthattheelasticityofthederiveddemandforaninputdependsonthepriceelasticityofdemandfortheoutputbeingproducedwasfirstsuggestedbyAlfredMarshall.TheproofgivenherefollowsthatinD.Hamermesh,LaborDemand(Princeton,NJ:PrincetonUniversityPress,1993).11.12Cross-priceeffectsininputdemandWithtwoinputs,cross-priceeffectsoninputdemandcanbeeasilycalculatedusingtheprocedureoutlinedinProblem11.11.a.Usesteps(b),(d),and(e)fromProblem11.11toshowthateK,w¼sLðσþeQ,PÞandeL,v¼sKðσþeQ,PÞ.b.Describeintuitivelywhyinputsharesappearsomewhatdifferentlyinthedemandelasticitiesinpart(e)ofProblem11.11thantheydoinpart(a)ofthisproblem.c.Theexpressioncomputedinpart(a)canbeeasilygeneralizedtothemany-inputcaseasexi,wj¼sjðAi,jþeQ,PÞ,whereAi,jistheAllenelasticityofsubstitutiondefinedinProblem10.12.ForreasonsdescribedinProblems10.11and10.12,thisapproachtoinputdemandinthemulti-inputcaseisgenerallyinferiortousingMorishimaelasticities.Oneodditymightbementioned,however.Forthecasei¼jthisexpressionseemstosaythateL,w¼sLðAL,LþeQ,PÞ,andifwejumpedtotheconclusionthatAL,L¼σinthetwo-inputcasethenthiswouldcontradicttheresultfromProblem11.11.YoucanresolvethisparadoxbyusingthedefinitionsfromProblem10.12toshowthat,withtwoinputs,AL,L¼ðsK=sLÞ⋅AK,L¼ðsK=sLÞ⋅σandsothereisnodisagreement.384Part3ProductionandSupply
SUGGESTIONSFORFURTHERREADINGFerguson,C.E.TheNeoclassicalTheoryofProductionandDistribution.Cambridge,UK:CambridgeUniversityPress,1969.Providesacompleteanalysisoftheoutputeffectinfactordemand.Alsoshowshowthedegreeofsubstitutabilityaffectsmanyoftheresultsinthischapter.Hicks,J.R.ValueandCapital,2nded.Oxford:OxfordUniversityPress,1947.TheAppendixlooksindetailatthenotionoffactorcomplementarity.Mas-Colell,A.,M.D.Whinston,andJ.R.Green.Microeco-nomicTheory.NewYork:OxfordUniversityPress,1995.Providesanelegantintroductiontothetheoryofproductionusingvectorandmatrixnotation.Thisallowsforanarbitrarynumberofinputsandoutputs.Samuelson,P.A.FoundationsofEconomicAnalysis.Cam-bridge,MA:HarvardUniversityPress,1947.Earlydevelopmentoftheprofitfunctionideatogetherwithanicediscussionoftheconsequencesofconstantreturnstoscaleformarketequilibrium.Sydsaeter,K.,A.Strom,andP.Berck.Economists’Mathe-maticalManual,3rded.Berlin:Springer-Verlag,2000.Chapter25offersformulasforanumberofprofitandfactordemandfunctions.Varian,H.R.MicroeconomicAnalysis,3rded.NewYork:W.W.Norton,1992.Includesanentirechapterontheprofitfunction.Varianoffersanovelapproachforcomparingshort-andlong-runresponsesusingtheLeChatelierprinciple.Chapter11ProfitMaximization385
EXTENSIONSApplicationsoftheProfitFunctionInChapter11weintroducedtheprofitfunction.Thatfunctionsummarizesthefirm’s“bottomline”asitdependsonthepricesitfacesforitsoutputsandinputs.Intheseextensionsweshowhowsomeofthepropertiesoftheprofitfunctionhavebeenusedtoassessimportantempiricalandtheoreticalquestions.E11.1ConvexityandpricestabilizationConvexityoftheprofitfunctionimpliesthatafirmwillgenerallypreferafluctuatingoutputpricetoonethatisstabilized(say,throughgovernmentintervention)atitsmeanvalue.Theresultrunscontrarytothedirectionofeconomicpolicyinmanylessdevelopedcountries,whichtendstostressthedesirabilityofstabilizationofcommodityprices.Severalfactorsmayaccountforthisseemingparadox.First,manyplansto“stabilize”com-moditypricesareinrealityplanstoraisetheaverageleveloftheseprices.Cartelsofproducersoftenhavethisastheirprimarygoal,forexample.Second,theconvexityresultappliesforasingleprice-takingfirm.Fromtheperspectiveoftheentiremarket,totalreven-uesfromstabilizedorfluctuatingpriceswilldependonthenatureofthedemandfortheproduct.1Athirdcomplicationthatmustbeaddressedinassessingpricestabilizationschemesisfirms’expectationsoffutureprices.Whencommoditiescanbestored,optimalpro-ductiondecisionsinthepresenceofpricestabilizationschemescanbequitecomplex.Finally,thepurposeofpricestabilizationschemesmayinsomesituationsbefocusedmoreonreducingrisksfortheconsumersofbasiccommodities(suchasfood)thanonthewelfareofproducers.Still,thisfundamentalpropertyoftheprofitfunctionsuggestscautionindevisingpricestabi-lizationschemesthathavedesirablelong-runeffectsonproducers.Foranextendedtheoreticalanalysisoftheseissues,seeNewburyandStiglitz(1981).E11.2Producersurplusandtheshort-runcostsofdiseaseDiseaseepisodescanseverelydisruptmarkets,leadingtoshort-runlossesinproducerandconsumersurplus.Forfirms,theselossescanbecomputedastheshort-runlossesofprofitsfromtemporarilylowerpricesfortheiroutputorfromthetemporarilyhigherinputpricestheymustpay.AparticularextensivesetofsuchcalculationsisprovidedbyHarrington,Krupnick,andSpofford(1991)intheirdetailedstudyofagiardi-asisoutbreakinPennsylvaniain1983.Althoughcon-sumerssufferedmostofthelossesassociatedwiththisoutbreak,theauthorsalsocalculatesubstantiallossesforrestaurantsandbarsintheimmediatearea.Suchlossesarosebothfromreducedbusinessforthesefirmsandfromthetemporaryneedtousebottledwaterandotherhigh-costinputsintheiroperations.Quantitativecalculationsoftheselossesarebasedonprofitfunctionsdescribedbytheauthors.E11.3ProfitfunctionsandproductivitymeasurementInChapter9weshowedthattotalfactorproductivitygrowthisusuallymeasuredasGA¼GqskGkslGl,whereGx¼dx=dtx¼dlnxdtandwhereskandslarethesharesofcapitalandlaborintotalcosts,respectively.Onedifficultywithmakingthiscalculationisthatitrequiresmeasuringchangesininputusageovertime—ameasurementthatcanbeespeciallydifficultforcapital.Theprofitfunctionpro-videsanalternativewayofmeasuringthesamephe-nomenonwithoutestimatinginputusagedirectly.Tounderstandthelogicofthisapproach,considertheproductionfunctionwewishtoexamine,q¼fðk,l,tÞ.Wewanttoknowhowoutputwouldchangeovertimeifinputlevelswereheldconstant.Thatis,wewishtomeasure∂ðlnqÞ=∂t¼ft=f.Noticetheuseofpartialdifferentiationinthisexpression—inwords,wewanttoknowtheproportionatechangeinfovertimewhenotherinputsareheldconstant.Iftheproductionfunc-tionexhibitsconstantreturnstoscaleandifthefirmisapricetakerforbothinputsanditsoutput,itisfairlyeasy2toshowthatthispartialderivativeisthemeasureof1Specifically,foraconstantelasticitydemandfunction,totalrevenuewillbeaconcavefunctionofpriceifdemandisinelasticbutconvexifdemandiselastic.Hence,intheelasticcase,producerswillobtainhighertotalrevenuesfromafluctuatingpricethanfromapricestabilizedatitsmeanvalue.2Theproofproceedsbydifferentiatingtheproductionfunctionlogarith-micallywithrespecttotimeasGq¼dðlnqÞ=dt¼eq,kGkþeq,lGlþft=fandthenrecognizingthat,withconstantreturnstoscaleandprice-takingbehavior,eq,k¼skandeq,l¼sl.386Part3ProductionandSupply
changingtotalfactorproductivitywewant—thatis,GA¼ft=f.Nowconsidertheprofitfunction,ðP,v,w,tÞ.Bydefinition,profitsaregivenbyπ¼Pqvkwl¼Pfvkwl,so∂lnΠ∂t¼PftΠandthusGA¼ftf¼ΠPf⋅∂lnΠ∂t¼ΠPq⋅∂lnΠ∂t.(i)So,inthisspecialcase,changesintotalfactorpro-ductivitycanbeinferredfromtheshareofprofitsintotalrevenueandthetimederivativeofthelogoftheprofitfunction.Butthisconclusioncanbereadilygeneralizedtocasesofnonconstantreturnstoscaleandeventofirmsthatproducemultipleoutputs(seee.g.Kumbhakar,2002).Hence,forsituationswhereinputandoutputpricesaremorereadilyavailablethaninputquantities,usingtheprofitfunctionisanattractivewaytoproceed.Threeexamplesofthisusefortheprofitfunctionmightbementioned.KaragiannisandMergos(2000)reassessthemajorincreasesintotalfactorproductivitythathavebeenexperiencedbyU.S.agricultureduringthepast50yearsusingtheprofitfunctionapproach.Theyfindresultsthatarebroadlyconsistentwiththoseusingmoreconventionalmeasures.Huang(2000)adoptsthesameapproachinastudyofTaiwanesebankingandfindssignificantincreasesinproductivitythatcouldnotbedetectedusingothermethods.Fi-nally,CoelliandPerelman(2000)useamodifiedprofitfunctionapproachtomeasuretherelativeeffi-ciencyofEuropeanrailroads.Perhapsnotsurprisingly,theyfindthatDutchrailroadsarethemostefficientinEuropewhereasthoseinItalyaretheleastefficient.ReferencesCoelli,T.,andS.Perelman.“TechnicalEfficiencyofEuropeanRailways:ADistanceFunctionApproach.”AppliedEconomics(December2000):1967–76.Harrington,W.A.,J.Krupnick,andW.O.Spofford.EconomicsandEpisodicDisease:TheBenefitsofPrevent-ingaGiardiasisOutbreak.Baltimore:JohnsHopkinsUniversityPress,1991.Huang,T.“EstimatingX-EfficiencyinTaiwaneseBankingUsingaTranslogShadowProfitFunction.”JournalofProductivityAnalysis(November2000):225–45.Karagiannis,G.,andG.J.Mergos.“TotalFactorProduc-tivityGrowthandTechnicalChangeinaProfitFunctionFramework.”JournalofProductivityAnalysis(July2000):31–51.Kumbhakar,S.“ProductivityMeasurement:AProfitFunctionApproach.”AppliedEconomicsLetters(April2002):331–34.Newbury,D.M.G.,andJ.E.Stiglitz.TheTheoryofCommodityPriceStabilization.Oxford:OxfordUniver-sityPress,1981.Chapter11ProfitMaximization387
This page intentionally left blank
PART4CompetitiveMarketsCHAPTER12ThePartialEquilibriumCompetitiveModelCHAPTER13GeneralEquilibriumandWelfareInParts2and3wedevelopedmodelstoexplainthedemandforgoodsbyutility-maximizingindividualsandthesupplyofgoodsbyprofit-maximizingfirms.Inthispartwewillbringthesetwostrandsofanalysistogethertodescribetheprocessbywhichpricesaredetermined.Wewillfocusononlyonespecificmodelofpricedetermination,theperfectlycompetitivemodel.Thatmodelassumesalargeenoughnumberofdemandersandsuppliersofeachgoodsothateachmustbeapricetaker.InPart5wewillillustratesomeofthemodelsthatresultfromrelaxingthestrictprice-takingassumptionsofthecompetitivecase,butinthispartweassumeprice-takingbehaviorthroughout.Chapter12developsthefamiliarpartialequilibriummodelofpricedeterminationincompetitivemarkets.TheprincipalresultistheMarshallian“cross”diagramofsupplyanddemandthatwefirstdiscussedinChapter1.Thismodelillustratesa“partial”equilibriumviewofpricedeterminationbecauseitfocusesononlyasinglemarket.Intheconcludingsectionsofthechapterweshowsomeofthewaysinwhichsuchmodelsareapplied.Aspecificfocusisonillustratinghowthecompetitivemodelcanbeusedtojudgethewelfareconsequencesformarketparticipantsofchangesinmarketequilibria.Althoughthepartialequilibriumcompetitivemodelisusefulforstudyingasinglemarketindetail,itisinappropriateforexaminingrelationshipsamongmarkets.Tocapturesuchcross-marketeffectsrequiresthedevelopmentof“general”equilibriummodels—atopicwetakeupinChapter13.Thereweshowhowanentireeconomycanbeviewedasasystemofinterconnectedcompetitivemarketsthatdetermineallpricessimultaneously.Wealsoexaminehowwelfareconsequencesofvariouseconomicquestionscanbestudiedinthismodel.
This page intentionally left blank
CHAPTER12ThePartialEquilibriumCompetitiveModelInthischapterwedescribethefamiliarmodelofpricedeterminationunderperfectcompetitionthatwasoriginallydevelopedbyAlfredMarshallinthelatenineteenthcentury.Thatis,weprovideafairlycompleteanalysisofthesupply-demandmechanismasitappliestoasinglemarket.Thisisperhapsthemostwidelyusedmodelforthestudyofprices.MARKETDEMANDInPart2weshowedhowtoconstructindividualdemandfunctionsthatillustratechangesinthequantityofagoodthatautility-maximizingindividualchoosesasthemarketpriceandotherfactorschange.Withonlytwogoods(xandy)weconcludedthatanindividual’s(Marshallian)demandfunctioncanbesummarizedasquantityofxdemanded¼xðpx,py,IÞ.(12.1)Nowwewishtoshowhowthesedemandfunctionscanbeaddeduptoreflectthedemandofallindividualsinamarketplace.Usingasubscriptiði¼1,nÞtorepresenteachperson’sdemandfunctionforgoodx,wecandefinethetotaldemandinthemarketasmarketdemandforX¼Xni¼1xiðpx,py,IiÞ.(12.2)Noticethreethingsaboutthissummation.First,weassumethateveryoneinthismarketplacefacesthesamepricesforbothgoods.Thatis,pxandpyenterEquation12.2withoutperson-specificsubscripts.Ontheotherhand,eachperson’sincomeentersintohisorherownspecificdemandfunction.Marketdemanddependsnotonlyonthetotalincomeofallmarketparticipantsbutalsoonhowthatincomeisdistributedamongconsumers.Finally,observethatwehaveusedanuppercaseXtorefertomarketdemand—anotationwewillsoonmodify.ThemarketdemandcurveEquation12.2makesclearthatthetotalquantityofagooddemandeddependsnotonlyonitsownpricebutalsoonthepricesofothergoodsandontheincomeofeachperson.ToconstructthemarketdemandcurveforgoodX,weallowpxtovarywhileholdingpyandtheincomeofeachpersonconstant.Figure12.1showsthisconstructionforthecasewherethereareonlytwoconsumersinthemarket.Foreachpotentialpriceofx,thepointonthemarketdemandcurveforXisfoundbyaddingupthequantitiesdemandedbyeachperson.Forexample,atapriceofpxperson1demandsx1andperson2demandsx2.Thetotalquantitydemandedinthistwo-personmarketisthesumofthesetwoamountsðX¼x1þx2Þ.Thepointpx,XisthereforeonepointonthemarketdemandcurveforX.Otherpointsonthe391
curvearederivedinasimilarway.Themarketdemandcurveisthusa“horizontalsum”ofeachindividual’sdemandcurve.1ShiftsinthemarketdemandcurveThemarketdemandcurve,then,summarizestheceterisparibusrelationshipbetweenXandpx.Itisimportanttokeepinmindthatthecurveisinrealityatwo-dimensionalrepresenta-tionofamany-variablefunction.Changesinpxresultinmovementsalongthiscurve,butchangesinanyoftheotherdeterminantsofthedemandforXcausethecurvetoshifttoanewposition.Ageneralriseinincomeswould,forexample,causethedemandcurvetoshiftoutward(assumingXisanormalgood)becauseeachindividualwouldchoosetobuymoreXateveryprice.Similarly,ariseinpywouldshiftthedemandcurvetoXoutwardifindividualsregardedXandYassubstitutes,butitwouldshiftthedemandcurveforXinwardifthegoodswereregardedascomplements.Accountingforallsuchshiftsmaysometimesrequirereturningtoexaminetheindividualdemandfunctionsthatconstitutethemarketrelationship,especiallywhenexaminingsituationsinwhichthedistributionofincomechangesandtherebyraisessomeincomeswhilereducingothers.Tokeepmattersstraight,economistsusuallyreservethetermchangeinquantitydemandedforamovementalongafixeddemandcurveinresponsetoachangeinpx.Alternatively,anyshiftinthepositionofthedemandcurveisreferredtoasachangeindemand.EXAMPLE12.1ShiftsinMarketDemandTheseideascanbeillustratedwithasimplesetoflineardemandfunctions.Supposeindividual1’sdemandfororanges(x,measuredindozensperyear)isgivenby2x1¼102pxþ0:1I1þ0:5py,(12.3)FIGURE12.1ConstructionofaMarketDemandCurvefromIndividualDemandCurvesAmarketdemandcurveisthe“horizontalsum”ofeachindividual’sdemandcurve.Ateachpricethequantitydemandedinthemarketisthesumoftheamountseachindividualdemands.Forexample,atpxthedemandinthemarketisx1þx2¼x.pxpxpxpx*x1Xx1*x2x2*Xx*(a) Individual 1(b) Individual 2(c) Market demandx1x21Compensatedmarketdemandcurvescanbeconstructedinexactlythesamewaybysummingeachindividual’scom-pensateddemand.Suchacompensatedmarketdemandcurvewouldholdeachperson’sutilityconstant.2Thislinearformisusedtoillustratesomeissuesinaggregation.Itisdifficulttodefendthisformtheoretically,however.Forexample,itisnothomogeneousofdegree0inallpricesandincome.392Part4CompetitiveMarkets
wherepx¼priceoforangesðdollarsperdozenÞ,I1¼individual1’sincomeðinthousandsofdollarsÞ,py¼priceofgrapefruitðagrosssubstitutefororanges—dollarsperdozenÞ.Individual2’sdemandfororangesisgivenbyx2¼17pxþ0:05I2þ0:5py.(12.4)HencethemarketdemandfunctionisXðpx,py,I1,I2Þ¼x1þx2¼273pxþ0:1I1þ0:05I2þpy.(12.5)Herethecoefficientforthepriceoforangesrepresentsthesumofthetwoindividuals’coefficients,asdoesthecoefficientforgrapefruitprices.Thisreflectstheassumptionthatorangeandgrapefruitmarketsarecharacterizedbythelawofoneprice.Becausethein-dividualshavedifferingcoefficientsforincome,however,thedemandfunctiondependsoneachperson’sincome.TographEquation12.5asamarketdemandcurve,wemustassumevaluesforI1,I2,andpy(becausethedemandcurvereflectsonlythetwo-dimensionalrelationshipbetweenxandpx).IfI1¼40,I2¼20,andpy¼4,thenthemarketdemandcurveisgivenbyX¼273pxþ4þ1þ4¼363px,(12.6)whichisasimplelineardemandcurve.Ifthepriceofgrapefruitweretorisetopy¼6thenthecurvewould,assumingincomesremainunchanged,shiftoutwardtoX¼273pxþ4þ1þ6¼383px,(12.7)whereasanincometaxthattook10(thousanddollars)fromindividual1andtransferredittoindividual2wouldshiftthedemandcurveinwardtoX¼273pxþ3þ1:5þ4¼35:53px(12.8)becauseindividual1hasalargermarginaleffectofincomechangesonorangepurchases.Allofthesechangesshiftthedemandcurveinaparallelwaybecause,inthislinearcase,noneofthemaffectseitherindividual’scoefficientforpx.Inallcases,ariseinpxof0.10(tencents)wouldcauseXtofallby0.30(dozenperyear).QUERY:Forthislinearcase,whenwoulditbepossibletoexpressmarketdemandasalinearfunctionoftotalincomeðI1þI2Þ?Alternatively,supposetheindividualshaddifferingco-efficientsforpy.Wouldthatchangetheanalysisinanyfundamentalway?GeneralizationsAlthoughourconstructionconcernsonlytwogoodsandtwoindividuals,itiseasilygeneral-ized.Supposetherearengoods(denotedbyxi,i¼1,n)withpricespi,i¼1,n.Assumealsothattherearemindividualsinsociety.Thenthejthindividual’sdemandfortheithgoodwilldependonallpricesandonIj,theincomeofthisperson.Thiscanbedenotedbyxi,j¼xi,jðp1,…,pn,IjÞ,(12.9)wherei¼1,nandj¼1,m.Chapter12ThePartialEquilibriumCompetitiveModel393
Usingtheseindividualdemandfunctions,marketdemandconceptsareprovidedbythefollowingdefinition.DEFINITIONMarketdemand.ThemarketdemandfunctionforaparticulargoodðXiÞisthesumofeachindividual’sdemandforthatgood:Xi¼Xmj¼1xi,jðp1,…,pn,IjÞ.(12.10)ThemarketdemandcurveforXiisconstructedfromthedemandfunctionbyvaryingpi,whileholdingallotherdeterminantsofXiconstant.Assumingthateachindividual’sdemandcurveisdownwardsloping,thismarketdemandcurvewillalsobedownwardsloping.Ofcourse,thisdefinitionisjustageneralizationofourpriordiscussion,butthreefeatureswarrantrepetition.First,thefunctionalrepresentationofEquation12.10makesclearthatthedemandforXidependsnotonlyonpibutalsoonthepricesofallothergoods.Achangeinoneofthoseotherpriceswouldthereforebeexpectedtoshiftthedemandcurvetoanewposition.Second,thefunctionalnotationindicatesthatthedemandforXidependsontheentiredistributionofindividuals’incomes.Althoughinmanyeconomicdiscussionsitiscustomarytorefertotheeffectofchangesinaggregatetotalpurchasingpoweronthedemandforagood,thisapproachmaybeamisleadingsimplificationbecausetheactualeffectofsuchachangeontotaldemandwilldependonpreciselyhowtheincomechangesaredistributedamongindividuals.Finally,althoughtheyareobscuredsomewhatbythenotationwehavebeenusing,theroleofchangesinpreferencesshouldbementioned.Wehaveconstructedindividuals’demandfunctionswiththeassumptionthatpreferences(asrepre-sentedbyindifferencecurvemaps)remainfixed.Ifpreferencesweretochange,sowouldindividualandmarketdemandfunctions.Hence,marketdemandcurvescanclearlybeshiftedbychangesinpreferences.Inmanyeconomicanalyses,however,itisassumedthatthesechangesoccursoslowlythattheymaybeimplicitlyheldconstantwithoutmisrepre-sentingthesituation.AsimplifiednotationOfteninthisbookweshallbelookingatonlyonemarket.Inordertosimplifythenotation,inthesecasesweshalluseQDtorefertothequantityoftheparticulargooddemandedinthismarketandPtodenoteitsmarketprice.Asalways,whenwedrawademandcurveintheQ–Pplane,theceterisparibusassumptionisineffect.Ifanyofthefactorsmentionedintheprevioussection(otherprices,individuals’incomes,orpreferences)shouldchange,theQ–Pdemandcurvewillshift,andweshouldkeepthatpossibilityinmind.Whenweturntoconsiderrelationshipsamongtwoormoregoods,however,wewillreturntothenotationwehavebeenusingupuntilnow(thatis,denotinggoodsbyxandyorbyxi).ElasticityofmarketdemandWhenweusethisnotationformarketdemand,wewillalsouseacompactnotationforthepriceelasticityofthemarketdemandfunction:priceelasticityofmarketdemand¼eQ,P¼∂QDðP,P0,IÞ∂P⋅PQD,(12.11)wherethenotationisintendedasareminderthatthedemandforQdependsonmanyfactorsotherthanitsownprice,suchasthepricesofothergoodsðP0Þandtheincomesofallpotentialdemanders(I).Theseotherfactorsareheldconstantwhencomputingthe394Part4CompetitiveMarkets
own-priceelasticityofmarketdemand.AsinChapter5,thiselasticitymeasurestheproportionateresponseinquantitydemandedtoa1percentchangeinagood’sprice.MarketdemandisalsocharacterizedbywhetherdemandiselasticðeQ,P<1Þorinelas